IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i2p455-476.html
   My bibliography  Save this article

Non nested model selection for spatial count regression models with application to health insurance

Author

Listed:
  • Claudia Czado
  • Holger Schabenberger
  • Vinzenz Erhardt

Abstract

In this paper we consider spatial regression models for count data. We examine not only the Poisson distribution but also the generalized Poisson capable of modeling over-dispersion, the negative Binomial as well as the zero-inflated Poisson distribution which allows for excess zeros as possible response distribution. We add random spatial effects for modeling spatial dependency and develop and implement MCMC algorithms in $$R$$ for Bayesian estimation. The corresponding R library ‘spatcounts’ is available on CRAN. In an application the presented models are used to analyze the number of benefits received per patient in a German private health insurance company. Since the deviance information criterion is only appropriate for exponential family models, we use in addition the Vuong and Clarke test with a Schwarz correction to compare possibly non nested models. We illustrate how they can be used in a Bayesian context. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Claudia Czado & Holger Schabenberger & Vinzenz Erhardt, 2014. "Non nested model selection for spatial count regression models with application to health insurance," Statistical Papers, Springer, vol. 55(2), pages 455-476, May.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:2:p:455-476
    DOI: 10.1007/s00362-012-0491-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0491-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0491-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, September.
    2. Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(3), pages 347-363, July.
    3. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    4. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    5. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    6. Bae, S. & Famoye, F. & Wulu, J.T. & Bartolucci, A.A. & Singh, K.P., 2005. "A rich family of generalized Poisson regression models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 4-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    2. Karsten Schweikert & Manuel Huth & Mark Gius, 2021. "Detecting a copycat effect in school shootings using spatio‐temporal panel count models," Contemporary Economic Policy, Western Economic Association International, vol. 39(4), pages 719-736, October.
    3. Antonio J. Sáez-Castillo & Antonio Conde-Sánchez, 2017. "Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson regression model," Statistical Papers, Springer, vol. 58(1), pages 19-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Santolino & Jean-Philippe Boucher, 2009. "Modelling the disability severity score in motor insurance claims: an application to the Spanish case," IREA Working Papers 200902, University of Barcelona, Research Institute of Applied Economics, revised Jan 2009.
    2. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    3. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    4. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    5. Genius, Margarita & Stefanou, Spiro E. & Tzouvelekas, Vangelis, 2012. "Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities," European Journal of Operational Research, Elsevier, vol. 220(3), pages 844-852.
    6. Morescalchi, Andrea & Pammolli, Fabio & Penner, Orion & Petersen, Alexander M. & Riccaboni, Massimo, 2015. "The evolution of networks of innovators within and across borders: Evidence from patent data," Research Policy, Elsevier, vol. 44(3), pages 651-668.
    7. Romina Gambacorta & Maria Iannario, 2013. "Measuring Job Satisfaction with CUB Models," LABOUR, CEIS, vol. 27(2), pages 198-224, June.
    8. Stéphanie Truchet & Nicolas Mauhe & Marie Herve, 2017. "Veterinarian shortage areas: what determines the location of new graduates?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 255-282, December.
    9. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    10. Fontaine, Charles & Frostig, Ron D. & Ombao, Hernando, 2020. "Modeling non-linear spectral domain dependence using copulas with applications to rat local field potentials," Econometrics and Statistics, Elsevier, vol. 15(C), pages 85-103.
    11. David Dale & Andrei Sirchenko, 2021. "Estimation of nested and zero-inflated ordered probit models," Stata Journal, StataCorp LP, vol. 21(1), pages 3-38, March.
    12. David Danz & Dietmar Fehr & Dorothea Kübler, 2012. "Information and beliefs in a repeated normal-form game," Experimental Economics, Springer;Economic Science Association, vol. 15(4), pages 622-640, December.
    13. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    14. F. Marta L. Lascio & Simone Giannerini, 2019. "Clustering dependent observations with copula functions," Statistical Papers, Springer, vol. 60(1), pages 35-51, February.
    15. Ait Sidhoum, Amer & Serra, Teresa, 2017. "Corporate social responsibility and dimensions of performance: An application to U.S. electric utilities," Utilities Policy, Elsevier, vol. 48(C), pages 1-11.
    16. Mildenberger, Carl David & Pietri, Antoine, 2018. "How does size matter for military success? Evidence from virtual worlds," Journal of Economic Behavior & Organization, Elsevier, vol. 154(C), pages 137-155.
    17. Wooton, Ian & Darby, Julia & Desbordes, Rodolphe, 2009. "Does Public Governance Always Matter? How Experience of Poor Institutional Quality Influences FDI to the South," CEPR Discussion Papers 7533, C.E.P.R. Discussion Papers.
    18. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    19. Paul De Boer & Richard Paap, 2009. "Testing non‐nested demand relations: linear expenditure system versus indirect addilog," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 368-384, August.
    20. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:2:p:455-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.