IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v34y2025i4d10.1007_s10260-025-00801-4.html
   My bibliography  Save this article

Symmetric (h, ϕ)-divergence approach to serial independence testing

Author

Listed:
  • Emad Ashtari Nezhad

    (General Administration of Economic Affairs and Finance of Razavi Khorasan
    ME Institute)

Abstract

This study presents a novel framework for testing independence in time series using $$(h,\phi )$$ ( h , ϕ ) -divergence and quantile symbolization. We derived the asymptotic distribution of the test statistic and proposed a bootstrap method to enhance reliability. The simulation results showed that "Cressie and Read" and "Rukhin" divergences are optimal when aligned with Pearson’s divergence, while Rényi is optimal for cubic divergence. The proposed tests demonstrated superior size-corrected power compared to existing methods, particularly in Jensen-Shannon and Total Variation divergences across various sample sizes. Finally, applications to stock price data from the Tehran Stock Exchange confirmed the method’s effectiveness in detecting dependence and validating model adequacy.

Suggested Citation

  • Emad Ashtari Nezhad, 2025. "Symmetric (h, ϕ)-divergence approach to serial independence testing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(4), pages 787-814, September.
  • Handle: RePEc:spr:stmapp:v:34:y:2025:i:4:d:10.1007_s10260-025-00801-4
    DOI: 10.1007/s10260-025-00801-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-025-00801-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-025-00801-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. J.J. Dik & M.C.M. de Gunst, 1985. "The Distribution Of General Quadratic Forms In Norma," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 39(1), pages 14-26, March.
    2. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    3. Helmut Elsinger, 2010. "Independence Tests based on Symbolic Dynamics," Working Papers 165, Oesterreichische Nationalbank (Austrian Central Bank).
    4. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    5. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    6. Dionisio, Andreia & Menezes, Rui & Mendes, Diana A., 2004. "Mutual information: a measure of dependency for nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 326-329.
    7. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    8. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    9. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 437-453.
    10. Miguel A. Delgado, 1996. "Testing Serial Independence Using The Sample Distribution Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 271-285, May.
    11. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    2. repec:wyi:journl:002087 is not listed on IDEAS
    3. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    4. Herrera Gómez, Marcos, 2010. "Causalidad Espacial. Enfoque No Paramétrico [Spatial Causality. Non-Parametric Approach]," MPRA Paper 61326, University Library of Munich, Germany.
    5. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    6. George Kapetanios, 2007. "A Test for Serial Dependence Using Neural Networks," Working Papers 609, Queen Mary University of London, School of Economics and Finance.
    7. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús & Paelinck, Jean, 2010. "A Non-Parametric Approach to Spatial Causality," MPRA Paper 36768, University Library of Munich, Germany.
    8. Kilani Ghoudi & Bruno Rémillard, 2018. "Serial independence tests for innovations of conditional mean and variance models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 3-26, March.
    9. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    10. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    11. George Kapetanios, 2007. "A Test for Serial Dependence Using Neural Networks," Working Papers 609, Queen Mary University of London, School of Economics and Finance.
    12. Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
    13. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    14. Elsinger, Helmut, 2013. "Comment on: A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 838-840.
    15. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    16. Lei Jiang & Esfandiar Maasoumi & Jiening Pan & Ke Wu, 2018. "A test of general asymmetric dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 1026-1043, November.
    17. Wu, Edmond H.C. & Yu, Philip L.H. & Li, W.K., 2009. "A smoothed bootstrap test for independence based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2524-2536, May.
    18. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.
    19. Cho, Jin Seo & White, Halbert, 2011. "Generalized runs tests for the IID hypothesis," Journal of Econometrics, Elsevier, vol. 162(2), pages 326-344, June.
    20. Cees Diks & Sebastiano Manzan, 2001. "Tests for Serial Independence and Linearity based on Correlation Integrals," Tinbergen Institute Discussion Papers 01-085/1, Tinbergen Institute.
    21. Arthur Lewbel, 2000. "Asymptotic Trimming for Bounded Density Plug-in Estimators," Boston College Working Papers in Economics 479, Boston College Department of Economics, revised 30 Oct 2000.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:34:y:2025:i:4:d:10.1007_s10260-025-00801-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.