IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v73y2005i3p837-901.html
   My bibliography  Save this article

Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence

Author

Listed:
  • Yongmiao Hong
  • Halbert White

Abstract

Entropy is a classical statistical concept with appealing properties. Establishing asymptotic distribution theory for smoothed nonparametric entropy measures of dependence has so far proved challenging. In this paper, we develop an asymptotic theory for a class of kernel-based smoothed nonparametric entropy measures of serial dependence in a time-series context. We use this theory to derive the limiting distribution of Granger and Lin's (1994) normalized entropy measure of serial dependence, which was previously not available in the literature. We also apply our theory to construct a new entropy-based test for serial dependence, providing an alternative to Robinson's (1991) approach. To obtain accurate inferences, we propose and justify a consistent smoothed bootstrap procedure. The naive bootstrap is not consistent for our test. Our test is useful in, for example, testing the random walk hypothesis, evaluating density forecasts, and identifying important lags of a time series. It is asymptotically locally more powerful than Robinson's (1991) test, as is confirmed in our simulation. An application to the daily S&P 500 stock price index illustrates our approach. Copyright The Econometric Society 2005.

Suggested Citation

  • Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
  • Handle: RePEc:ecm:emetrp:v:73:y:2005:i:3:p:837-901
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2005.00597.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucas, Robert E, Jr, 1973. "Some International Evidence on Output-Inflation Tradeoffs," American Economic Review, American Economic Association, vol. 63(3), pages 326-334, June.
    2. Klein, Benjamin, 1977. "The Demand for Quality-adjusted Cash Balances: Price Uncertainty in the U.S. Demand for Money Function," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 691-715, August.
    3. Khan, Mohsin S, 1977. "The Variability of Expectations in Hyperinflations," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 817-827, August.
    4. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    5. Engle, Robert F, 1979. "A general Approach to the Construction of Model Diagnostics based upon the Lagrange Multiplier Principle," The Warwick Economics Research Paper Series (TWERPS) 156, University of Warwick, Department of Economics.
    6. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    7. Davidson, James E H, et al, 1978. "Econometric Modelling of the Aggregate Time-Series Relationship between Consumers' Expenditure and Income in the United Kingdom," Economic Journal, Royal Economic Society, vol. 88(352), pages 661-692, December.
    8. Friedman, Milton, 1977. "Nobel Lecture: Inflation and Unemployment," Journal of Political Economy, University of Chicago Press, vol. 85(3), pages 451-472, June.
    9. Belsley, David A., 1980. "On the efficient computation of the nonlinear full-information maximum-likelihood estimator," Journal of Econometrics, Elsevier, vol. 14(2), pages 203-225, October.
    10. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:73:y:2005:i:3:p:837-901. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.