IDEAS home Printed from
   My bibliography  Save this article

A smoothed bootstrap test for independence based on mutual information


  • Wu, Edmond H.C.
  • Yu, Philip L.H.
  • Li, W.K.


A test for independence of multivariate time series based on the mutual information measure is proposed. First of all, a test for independence between two variables based on i.i.d. (time-independent) data is constructed and is then extended to incorporate higher dimensions and strictly stationary time series data. The smoothed bootstrap method is used to estimate the null distribution of mutual information. The experimental results reveal that the proposed smoothed bootstrap test performs better than the existing tests and can achieve high powers even for moderate dependence structures. Finally, the proposed test is applied to assess the actual independence of components obtained from independent component analysis (ICA).

Suggested Citation

  • Wu, Edmond H.C. & Yu, Philip L.H. & Li, W.K., 2009. "A smoothed bootstrap test for independence based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2524-2536, May.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2524-2536

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zheng, John Xu, 2000. "A Consistent Test Of Conditional Parametric Distributions," Econometric Theory, Cambridge University Press, vol. 16(05), pages 667-691, October.
    2. La Rocca, Michele & Perna, Cira, 2005. "Variable selection in neural network regression models with dependent data: a subsampling approach," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 415-429, February.
    3. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," Review of Economic Studies, Oxford University Press, vol. 58(3), pages 437-453.
    4. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    5. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    6. Shimizu, Shohei & Hyvarinen, Aapo & Hoyer, Patrik O. & Kano, Yutaka, 2006. "Finding a causal ordering via independent component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3278-3293, July.
    7. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    8. Kojadinovic, Ivan, 2004. "Agglomerative hierarchical clustering of continuous variables based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 269-294, June.
    9. Ahmad, Ibrahim A. & Li, Qi, 1997. "Testing independence by nonparametric kernel method," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 201-210, June.
    10. Taskinen, S. & Sirkia, S. & Oja, H., 2007. "Independent component analysis based on symmetrised scatter matrices," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5103-5111, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2524-2536. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.