IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i1d10.1007_s10260-023-00724-y.html
   My bibliography  Save this article

Statistically validated coeherence and intensity in temporal networks of information flows

Author

Listed:
  • Paolo Pagnottoni

    (University of Pavia)

  • Alessandro Spelta

    (University of Pavia)

Abstract

We propose a method for characterizing the local structure of weighted multivariate time series networks. We draw intensity and coherence of network motifs, i.e. statistically recurrent subgraphs, to characterize the system behavior via higher-order structures derived upon effective transfer entropy networks. The latter consists of a model-free methodology enabling to correct for small sample biases affecting Shannon transfer entropy, other than conducting inference on the estimated directional time series information flows. We demonstrate the usefulness of our proposed method with an application to a set of global commodity prices. Our main result shows that, despite simple triadic structures are the most intense, coherent and statistically recurrent over time, their intensity suddenly decreases after the Global Financial Crisis, in favor of most complex triadic structures, while all types of subgraphs tend to become more coherent thereafter.

Suggested Citation

  • Paolo Pagnottoni & Alessandro Spelta, 2024. "Statistically validated coeherence and intensity in temporal networks of information flows," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(1), pages 131-151, March.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00724-y
    DOI: 10.1007/s10260-023-00724-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00724-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00724-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimpfl Thomas & Peter Franziska Julia, 2013. "Using transfer entropy to measure information flows between financial markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 85-102, February.
    2. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    3. Xiaoyi Han & Chih-Sheng Hsieh & Stanley I. M. Ko, 2021. "Spatial Modeling Approach for Dynamic Network Formation and Interactions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 120-135, January.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. Abdolsaeed Toomaj, 2017. "On the effect of dependency in information properties of series and parallel systems," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 419-435, August.
    6. Arjun Gupta & Solomon Harrar & Leandro Pardo, 2007. "On testing homogeneity of variances for nonnormal models using entropy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(2), pages 245-261, August.
    7. Jakob J. Bosma & Michael Koetter & Michael Wedow, 2019. "Too Connected to Fail? Inferring Network Ties From Price Co-Movements," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 67-80, January.
    8. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    9. Pagnottoni, Paolo & Spelta, Alessandro & Flori, Andrea & Pammolli, Fabio, 2022. "Climate change and financial stability: Natural disaster impacts on global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    10. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    11. Pagnottoni, Paolo, 2023. "Superhighways and roads of multivariate time series shock transmission: Application to cryptocurrency, carbon emission and energy prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Tiziano Squartini & Iman van Lelyveld & Diego Garlaschelli, 2013. "Early-warning signals of topological collapse in interbank networks," Papers 1302.2063, arXiv.org, revised Nov 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagnottoni, Paolo & Spelta, Alessandro, 2023. "The motifs of risk transmission in multivariate time series: Application to commodity prices," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    2. Pagnottoni, Paolo, 2023. "Superhighways and roads of multivariate time series shock transmission: Application to cryptocurrency, carbon emission and energy prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Celani, Alessandro & Cerchiello, Paola & Pagnottoni, Paolo, 2024. "The topological structure of panel variance decomposition networks," Journal of Financial Stability, Elsevier, vol. 71(C).
    4. Paolo Pagnottoni & Angelo Famà & Jong-Min Kim, 2024. "Financial networks of cryptocurrency prices in time-frequency domains," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(2), pages 1389-1407, April.
    5. Pagnottoni, Paolo & Spelta, Alessandro, 2024. "Hedging global currency risk: A dynamic machine learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    6. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    7. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    8. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    9. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    10. Lin, Li & Guo, Xin-Yu, 2019. "Identifying fragility for the stock market: Perspective from the portfolio overlaps network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 132-151.
    11. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    12. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    13. G. Hauton & J.-C. Héam, 2014. "How to Measure Interconnectedness between Banks, Insurers and Financial Conglomerates?," Debats Economiques et financiers 15, Banque de France.
    14. Gian Paolo Clemente & Rosanna Grassi & Chiara Pederzoli, 2020. "Networks and market-based measures of systemic risk: the European banking system in the aftermath of the financial crisis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 159-181, January.
    15. Lumsdaine, R.L. & Rockmore, D.N. & Foti, N.J. & Leibon, G. & Farmer, J.D., 2021. "The intrafirm complexity of systemically important financial institutions," Journal of Financial Stability, Elsevier, vol. 52(C).
    16. Raffaella Calabrese & Johan A. Elkink & Paolo S. Giudici, 2017. "Measuring bank contagion in Europe using binary spatial regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1503-1511, December.
    17. Temizsoy, Asena & Iori, Giulia & Montes-Rojas, Gabriel, 2017. "Network centrality and funding rates in the e-MID interbank market," Journal of Financial Stability, Elsevier, vol. 33(C), pages 346-365.
    18. Bevilacqua, Mattia & Tunaru, Radu & Vioto, Davide, 2023. "Options-based systemic risk, financial distress, and macroeconomic downturns," Journal of Financial Markets, Elsevier, vol. 65(C).
    19. Chen, Jinyan & Nie, Chun-Xiao, 2024. "Impact of the collapse of silicon valley bank on the banking sector: An analysis based on nonlinear high-frequency networks," Finance Research Letters, Elsevier, vol. 62(PB).
    20. Bevilacqua, Mattia & Tunaru, Radu & Vioto, Davide, 2020. "Options-based systemic risk, financial distress, and macroeconomic downturns," LSE Research Online Documents on Economics 118850, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00724-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.