IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v39y2021i1p120-135.html
   My bibliography  Save this article

Spatial Modeling Approach for Dynamic Network Formation and Interactions

Author

Listed:
  • Xiaoyi Han
  • Chih-Sheng Hsieh
  • Stanley I. M. Ko

Abstract

This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The key features of our model are the inclusion of dynamic effects and the use of time-varying latent variables to determine unobserved individual traits in network formation and activity interactions. The proposed model combines two well-known models in the field: latent space model for dynamic network formation and spatial dynamic panel data model for network interactions. This combination reflects real situations, where network links and activity outcomes are interdependent and jointly influenced by unobserved individual traits. Moreover, this combination enables us to (1) manage the endogenous selection issue inherited in network interaction studies, and (2) investigate the effect of homophily and individual heterogeneity in network formation. We develop a Bayesian Markov chain Monte Carlo sampling approach to estimate the model. We also provide a Monte Carlo experiment to analyze the performance of our estimation method and apply the model to a longitudinal student network data in Taiwan to study the friendship network formation and peer effect on academic performance. Supplementary materials for this article are available online.

Suggested Citation

  • Xiaoyi Han & Chih-Sheng Hsieh & Stanley I. M. Ko, 2021. "Spatial Modeling Approach for Dynamic Network Formation and Interactions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 120-135, January.
  • Handle: RePEc:taf:jnlbes:v:39:y:2021:i:1:p:120-135
    DOI: 10.1080/07350015.2019.1639395
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2019.1639395
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2019.1639395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pagnottoni, Paolo & Spelta, Alessandro, 2023. "The motifs of risk transmission in multivariate time series: Application to commodity prices," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    2. Cui Zhang & Dandan Zhang, 2023. "Spatial Interactions and the Spread of COVID-19: A Network Perspective," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 383-405, June.
    3. Chen, Cathy Yi-hsuan & Okhrin, Yarema & Wang, Tengyao, 2022. "Monitoring network changes in social media," LSE Research Online Documents on Economics 113742, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:39:y:2021:i:1:p:120-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.