IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v31y2022i2d10.1007_s10260-021-00571-9.html
   My bibliography  Save this article

Goodness-of-fit test for $$\alpha$$ α -stable distribution based on the quantile conditional variance statistics

Author

Listed:
  • Marcin Pitera

    (Jagiellonian University)

  • Aleksei Chechkin

    (University of Potsdam
    Akhiezer Institute for Theoretical Physics NSC “Kharkov Institute of Physics and Technology”)

  • Agnieszka Wyłomańska

    (Hugo Steinhaus Center, Wrocław University of Science and Technology)

Abstract

The class of $$\alpha$$ α -stable distributions is ubiquitous in many areas including signal processing, finance, biology, physics, and condition monitoring. In particular, it allows efficient noise modeling and incorporates distributional properties such as asymmetry and heavy-tails. Despite the popularity of this modeling choice, most statistical goodness-of-fit tests designed for $$\alpha$$ α -stable distributions are based on a generic distance measurement methods. To be efficient, those methods require large sample sizes and often do not efficiently discriminate distributions when the corresponding $$\alpha$$ α -stable parameters are close to each other. In this paper, we propose a novel goodness-of-fit method based on quantile (trimmed) conditional variances that is designed to overcome these deficiencies and outperforms many benchmark testing procedures. The effectiveness of the proposed approach is illustrated using extensive simulation study with focus set on the symmetric case. For completeness, an empirical example linked to plasma physics is provided.

Suggested Citation

  • Marcin Pitera & Aleksei Chechkin & Agnieszka Wyłomańska, 2022. "Goodness-of-fit test for $$\alpha$$ α -stable distribution based on the quantile conditional variance statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 387-424, June.
  • Handle: RePEc:spr:stmapp:v:31:y:2022:i:2:d:10.1007_s10260-021-00571-9
    DOI: 10.1007/s10260-021-00571-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-021-00571-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-021-00571-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    2. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401.
    3. Damian Jelito & Marcin Pitera, 2018. "New fat-tail normality test based on conditional second moments with applications to finance," Papers 1811.05464, arXiv.org, revised Apr 2020.
    4. Lombardi, Marco J., 2007. "Bayesian inference for [alpha]-stable distributions: A random walk MCMC approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2688-2700, February.
    5. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501.
    6. R. Srinivasan, 1971. "A test for normality," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 25(2), pages 113-115, June.
    7. Koblents, Eugenia & Míguez, Joaquín & Rodríguez, Marco A. & Schmidt, Alexandra M., 2016. "A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of α-stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 57-74.
    8. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2014. "Exact confidence sets and goodness-of-fit methods for stable distributions," Journal of Econometrics, Elsevier, vol. 181(1), pages 3-14.
    9. Wyłomańska, Agnieszka & Chechkin, Aleksei & Gajda, Janusz & Sokolov, Igor M., 2015. "Codifference as a practical tool to measure interdependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 412-429.
    10. R. Srinivasan, 1971. "On the Kuiper test for normality with mean and variance unknown," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 25(3), pages 153-157, September.
    11. M. Bee & L. Trapin, 2018. "A characteristic function-based approach to approximate maximum likelihood estimation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(13), pages 3138-3160, July.
    12. Jakubowski, Adam & Kobus, Maria, 1989. "[alpha]-Stable limit theorems for sums of dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 219-251, May.
    13. Jaworski, Piotr & Pitera, Marcin, 2020. "A note on conditional variance and characterization of probability distributions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    14. Krzysztof Burnecki & Agnieszka Wylomanska & Aleksei Chechkin, 2015. "Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    15. Pierre Barthelemy & Jacopo Bertolotti & Diederik S. Wiersma, 2008. "A Lévy flight for light," Nature, Nature, vol. 453(7194), pages 495-498, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    2. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Agnieszka Wyłomańska & D Robert Iskander & Krzysztof Burnecki, 2020. "Omnibus test for normality based on the Edgeworth expansion," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-36, June.
    4. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    5. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    6. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    7. Rafal Weron, 2005. "Market price of risk implied by Asian-style electricity options," Econometrics 0502003, University Library of Munich, Germany.
    8. Szymon Borak & Adam Misiorek & Rafał Weron, 2010. "Models for Heavy-tailed Asset Returns," SFB 649 Discussion Papers SFB649DP2010-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    10. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    11. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    12. Weron, Rafał & Burnecki, Krzysztof, 2004. "Modeling the risk process in the XploRe computing environment," Papers 2004,08, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    13. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    14. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    15. Burnecki, Krzysztof & Gajda, Janusz & Sikora, Grzegorz, 2011. "Stability and lack of memory of the returns of the Hang Seng index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3136-3146.
    16. Janczura, Joanna & Orzeł, Sebastian & Wyłomańska, Agnieszka, 2011. "Subordinated α-stable Ornstein–Uhlenbeck process as a tool for financial data description," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4379-4387.
    17. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    18. Makoto Maejima & Gennady Samorodnitsky, 1999. "Certain Probabilistic Aspects of Semistable Laws," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(3), pages 449-462, September.
    19. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    20. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:31:y:2022:i:2:d:10.1007_s10260-021-00571-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.