IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i1d10.1007_s11749-023-00894-7.html
   My bibliography  Save this article

Estimation of stability index for symmetric $$\alpha $$ α -stable distribution using quantile conditional variance ratios

Author

Listed:
  • Kewin Pączek

    (Jagiellonian University)

  • Damian Jelito

    (Jagiellonian University)

  • Marcin Pitera

    (Jagiellonian University)

  • Agnieszka Wyłomańska

    (Wrocław University of Science and Technology)

Abstract

The class of $$\alpha $$ α -stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the $$\alpha $$ α -stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric $$\alpha $$ α -stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric $$\alpha $$ α -stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.

Suggested Citation

  • Kewin Pączek & Damian Jelito & Marcin Pitera & Agnieszka Wyłomańska, 2024. "Estimation of stability index for symmetric $$\alpha $$ α -stable distribution using quantile conditional variance ratios," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 297-334, March.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:1:d:10.1007_s11749-023-00894-7
    DOI: 10.1007/s11749-023-00894-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00894-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00894-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Kateregga & Sure Mataramvura & David Taylor, 2017. "Parameter estimation for stable distributions with application to commodity futures log returns," Papers 1706.09756, arXiv.org.
    2. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0501, December.
    3. Rene Garcia & Eric Renault & David Veredas, 2011. "Estimation of stable distributions with indirect inference," ULB Institutional Repository 2013/136186, ULB -- Universite Libre de Bruxelles.
    4. repec:ulb:ulbeco:2013/136280 is not listed on IDEAS
    5. de Haan, L. & Pereira, T. Themido, 1999. "Estimating the index of a stable distribution," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 39-55, January.
    6. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    7. Jakubowski, Adam & Kobus, Maria, 1989. "[alpha]-Stable limit theorems for sums of dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 219-251, May.
    8. Jaworski, Piotr & Pitera, Marcin, 2020. "A note on conditional variance and characterization of probability distributions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    9. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    10. Arad, Ruth W, 1980. "Parameter Estimation for Symmetric Stable Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 209-220, February.
    11. Agnieszka Wyłomańska & D Robert Iskander & Krzysztof Burnecki, 2020. "Omnibus test for normality based on the Edgeworth expansion," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-36, June.
    12. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    13. Kilani Ghoudi & Bruno Rémillard, 2018. "Serial independence tests for innovations of conditional mean and variance models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 3-26, March.
    14. M. Kateregga & S. Mataramvura & D. Taylor, 2017. "Parameter estimation for stable distributions with application to commodity futures log-returns," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1318813-131, January.
    15. Akgiray, Vedat & Lamoureux, Christopher G, 1989. "Estimation of Stable-Law Parameters: A Comparative Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 85-93, January.
    16. Pierre Barthelemy & Jacopo Bertolotti & Diederik S. Wiersma, 2008. "A Lévy flight for light," Nature, Nature, vol. 453(7194), pages 495-498, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Pitera & Aleksei Chechkin & Agnieszka Wyłomańska, 2022. "Goodness-of-fit test for $$\alpha$$ α -stable distribution based on the quantile conditional variance statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 387-424, June.
    2. M. Bee & J. Hambuckers & L. Trapin, 2019. "Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1255-1266, August.
    3. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    4. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    5. Matteo Barigozzi & Roxana Halbleib & David Veredas, 2012. "Which model to match?," Working Papers 1229, Banco de España.
    6. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    7. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    8. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    9. Marco Bee, 2018. "Estimating the wrapped stable distribution via indirect inference," DEM Working Papers 2018/11, Department of Economics and Management.
    10. Mike G. Tsionas & Nicholas Apergis, 2023. "Another look at contagion across United States and European financial markets: Evidence from the credit default swaps markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1137-1155, January.
    11. M. Kateregga & S. Mataramvura & D. Taylor & Xibin Zhang, 2017. "Bismut–Elworthy–Li formula for subordinated Brownian motion applied to hedging financial derivatives," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1384125-138, January.
    12. Alperovych, Yan & Cumming, Douglas & Czellar, Veronika & Groh, Alexander, 2021. "M&A rumors about unlisted firms," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1324-1339.
    13. Taurai Muvunza, 2020. "An $\alpha$-Stable Approach to Modelling Highly Speculative Assets and Cryptocurrencies," Papers 2002.09881, arXiv.org, revised Jul 2023.
    14. Christian Walter, 2001. "Searching for scaling laws in distributional properties of price variations: a review over 40 years," Post-Print hal-04567942, HAL.
    15. Stelios Arvanitis, 2013. "On the Existence of Strongly Consistent Indirect Estimators When the Binding Function Is Compact Valued," Journal of Mathematics, Hindawi, vol. 2013, pages 1-14, November.
    16. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, December.
    17. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.
    18. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
    19. Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "Multiple Subordinated Modeling of Asset Returns," Papers 1907.12600, arXiv.org.
    20. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:1:d:10.1007_s11749-023-00894-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.