IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/25444.html
   My bibliography  Save this paper

Simulation of Risk Processes

Author

Listed:
  • Burnecki, Krzysztof
  • Weron, Rafal

Abstract

This paper is intended as a guide to simulation of risk processes. A typical model for insurance risk, the so-called collective risk model, treats the aggregate loss as having a compound distribution with two main components: one characterizing the arrival of claims and another describing the severity (or size) of loss resulting from the occurrence of a claim. The collective risk model is often used in health insurance and in general insurance, whenever the main risk components are the number of insurance claims and the amount of the claims. It can also be used for modeling other non-insurance product risks, such as credit and operational risk. In this paper we present efficient simulation algorithms for several classes of claim arrival processes.

Suggested Citation

  • Burnecki, Krzysztof & Weron, Rafal, 2010. "Simulation of Risk Processes," MPRA Paper 25444, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:25444
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/25444/2/MPRA_paper_25444.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    • Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    References listed on IDEAS

    as
    1. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401, June.
    2. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501, June.
    3. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    4. Hormann, W., 1993. "The transformed rejection method for generating Poisson random variables," Insurance: Mathematics and Economics, Elsevier, vol. 12(1), pages 39-45, February.
    5. Tse,Yiu-Kuen, 2009. "Nonlife Actuarial Models," Cambridge Books, Cambridge University Press, number 9780521764650, March.
    6. Burnecki, Krzysztof & Kukla, Grzegorz & Weron, Rafał, 2000. "Property insurance loss distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 269-278.
    7. Anna Chernobai & Krzysztof Burnecki & Svetlozar Rachev & Stefan Trück & Rafał Weron, 2006. "Modelling catastrophe claims with left-truncated severity distributions," Computational Statistics, Springer, vol. 21(3), pages 537-555, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    2. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Krzysztof Burnecki & Rafal Weron, 2006. "Visualization tools for insurance risk processes," HSC Research Reports HSC/06/06, Hugo Steinhaus Center, Wroclaw University of Technology.
    4. Chernobai, Anna & Burnecki, Krzysztof & Rachev, Svetlozar & Trueck, Stefan & Weron, Rafal, 2005. "Modelling catastrophe claims with left-truncated severity distributions (extended version)," MPRA Paper 10423, University Library of Munich, Germany.
    5. Krzysztof Burnecki & Joanna Janczura & Rafal Weron, 2010. "Building Loss Models," HSC Research Reports HSC/10/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Weron, Rafał & Burnecki, Krzysztof, 2004. "Modeling the risk process in the XploRe computing environment," Papers 2004,08, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    7. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, June.
    8. Burnecki, Krzysztof & Misiorek, Adam & Weron, Rafal, 2010. "Loss Distributions," MPRA Paper 22163, University Library of Munich, Germany.
    9. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    10. A. Christian Silva & Ju-Yi Yen, 2010. "Stochastic resonance and the trade arrival rate of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 461-466.

    More about this item

    Keywords

    Risk process; Claim arrival process; Homogeneous Poisson process (HPP); Non-homogeneous Poisson process (NHPP); Mixed Poisson process; Cox process; Renewal process.;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:25444. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.