Random walks, Hurst exponent, and market efficiency
Author
Abstract
Suggested Citation
DOI: 10.1007/s11135-025-02052-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Weron, Rafał, 2002.
"Estimating long-range dependence: finite sample properties and confidence intervals,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
- Rafal Weron, 2001. "Estimating long range dependence: finite sample properties and confidence intervals," HSC Research Reports HSC/01/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Bui, Quynh & Ślepaczuk, Robert, 2022. "Applying Hurst Exponent in pair trading strategies on Nasdaq 100 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
- Pernagallo, Giuseppe & Torrisi, Benedetto, 2020.
"Blindfolded monkeys or financial analysts: Who is worth your money? New evidence on informational inefficiencies in the U.S. stock market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
- Giuseppe Pernagallo & Benedetto Torrisi, 2019. "Blindfolded monkeys or financial analysts: who is worth your money? New evidence on informational inefficiencies in the U.S. stock market," Papers 1904.03488, arXiv.org, revised Oct 2019.
- Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
- Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
- Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018.
"Informational efficiency of Bitcoin—An extension,"
Economics Letters, Elsevier, vol. 163(C), pages 106-109.
- Aviral Kumar Tiwari & R.K. Jana & Debojyoti Das & David Roubaud, 2018. "Informational efficiency of Bitcoin—An extension," Post-Print hal-02091763, HAL.
- Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
- Pernagallo, Giuseppe & Torrisi, Benedetto, 2019. "An empirical analysis on the degree of Gaussianity and long memory of financial returns in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
- Lillo Fabrizio & Farmer J. Doyne, 2004.
"The Long Memory of the Efficient Market,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
- Fabrizio Lillo & J. Doyne Farmer, 2003. "The long memory of the efficient market," Papers cond-mat/0311053, arXiv.org, revised Jul 2004.
- Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
- Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2006. "Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 343-353.
- Lo, Andrew W, 1991.
"Long-Term Memory in Stock Market Prices,"
Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
- Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "RSSTATISTIC: RATS procedure to compute R/S Statistic (classical or Lo's modified)," Statistical Software Components RTS00191, Boston College Department of Economics.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
- Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
- Shiller, Robert J, 1981.
"Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?,"
American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
- Robert J. Shiller, 1980. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," NBER Working Papers 0456, National Bureau of Economic Research, Inc.
- Kevin E. Bassler & Gemunu H. Gunaratne & Joseph L. McCauley, 2006. "Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations with application to finance," Papers cond-mat/0602316, arXiv.org.
- Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
- Salvatore Caruso & Giuseppe Pernagallo, 2021. "On the efficiency of online soccer betting markets: a new methodology based on symbolic series," Economics Bulletin, AccessEcon, vol. 41(3), pages 1451-1460.
- Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
- Josselin Garnier & Knut Solna, 2016. "Option pricing under fast-varying long-memory stochastic volatility," Papers 1604.00105, arXiv.org, revised Apr 2018.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
- Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
- Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
- V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
- Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.
- Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
- Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
- Mouck, T., 1998. "Capital markets research and real world complexity: The emerging challenge of chaos theory," Accounting, Organizations and Society, Elsevier, vol. 23(2), pages 189-203, February.
- Gomes, Luís M. P. & Soares, Vasco J. S. & Gama, Sílvio M. A. & Matos, José A. O., 2018. "Long-term memory in Euronext stock indexes returns: an econophysics approach," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(4), pages 862-881, August.
- Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
- Pernagallo, Giuseppe & Torrisi, Benedetto, 2020.
"Blindfolded monkeys or financial analysts: Who is worth your money? New evidence on informational inefficiencies in the U.S. stock market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
- Giuseppe Pernagallo & Benedetto Torrisi, 2019. "Blindfolded monkeys or financial analysts: who is worth your money? New evidence on informational inefficiencies in the U.S. stock market," Papers 1904.03488, arXiv.org, revised Oct 2019.
- Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
- Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
- Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
- Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
- Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
- Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
More about this item
Keywords
Computational finance; Cryptocurrencies; Efficient market hypothesis; Hurst exponent; Information economics; Random walk;All these keywords.
JEL classification:
- B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- F38 - International Economics - - International Finance - - - International Financial Policy: Financial Transactions Tax; Capital Controls
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-025-02052-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.