IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v14y2022i1d10.1007_s12469-022-00293-5.html
   My bibliography  Save this article

An optimization model for planning limited-stop transit operations

Author

Listed:
  • Mahmood Mahmoodi Nesheli

    (University of Toronto, Transportation Research Institute (UTTRI))

  • Siva Srikukenthiran

    (University of Toronto, Transportation Research Institute (UTTRI))

  • Amer Shalaby

    (University of Toronto, Transportation Research Institute (UTTRI))

Abstract

Surface transit lines in North America commonly feature a basic service pattern consisting of a single branch of all-stop service, with stops usually tightly spaced. Such a configuration is inefficient for the operator and unattractive for the users, particularly if the prevailing passenger demand is unevenly distributed along the line. In such cases, it is more effective to tailor the scheduled services to passenger demand, both spatially and temporally. Public Transit agencies have increasingly adopted various stop and service pattern strategies in order to provide high-quality services while reducing operating costs. This study is focused on one such strategy, namely limited-stop operation. It proposes a new mathematical programming model to find the best candidate route stops for this strategy to minimize the total passenger travel time. The adopted approach consists of three steps: optimization, post-optimization, and simulation. An agent-based simulation platform, called Nexus, is used to represent real-life operating conditions, generate input data for the optimization model, enable post-optimization pattern recognition for grouping trips, and finally help assess the optimization results and present a best possible strategy. The developed approach is tested in a case study of a transit system in Hamilton, Ontario, Canada. Multiple analysis and algorithm test cases are demonstrated.

Suggested Citation

  • Mahmood Mahmoodi Nesheli & Siva Srikukenthiran & Amer Shalaby, 2022. "An optimization model for planning limited-stop transit operations," Public Transport, Springer, vol. 14(1), pages 63-83, March.
  • Handle: RePEc:spr:pubtra:v:14:y:2022:i:1:d:10.1007_s12469-022-00293-5
    DOI: 10.1007/s12469-022-00293-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-022-00293-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-022-00293-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter G. Furth, 1986. "Zonal Route Design for Transit Corridors," Transportation Science, INFORMS, vol. 20(1), pages 1-12, February.
    2. Tétreault, Paul R. & El-Geneidy, Ahmed M., 2010. "Estimating bus run times for new limited-stop service using archived AVL and APC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 390-402, July.
    3. Soto, Guillermo & Larrain, Homero & Muñoz, Juan Carlos, 2017. "A new solution framework for the limited-stop bus service design problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 67-85.
    4. William C. Jordan & Mark A. Turnquist, 1979. "Zone Scheduling of Bus Routes to Improve Service Reliability," Transportation Science, INFORMS, vol. 13(3), pages 242-268, August.
    5. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    6. Leiva, Carola & Muñoz, Juan Carlos & Giesen, Ricardo & Larrain, Homero, 2010. "Design of limited-stop services for an urban bus corridor with capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1186-1201, December.
    7. Koragot Kaeoruean & Santi Phithakkitnukoon & Merkebe Getachew Demissie & Lina Kattan & Carlo Ratti, 2020. "Analysis of demand–supply gaps in public transit systems based on census and GTFS data: a case study of Calgary, Canada," Public Transport, Springer, vol. 12(3), pages 483-516, October.
    8. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    9. Siva Srikukenthiran & Amer Shalaby, 2017. "Enabling large-scale transit microsimulation for disruption response support using the Nexus platform," Public Transport, Springer, vol. 9(1), pages 411-435, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Sadrani & Ahmad Reza Jafarian-Moghaddam & Mohsen Aboutalebi Esfahani & Amir Masoud Rahimi, 2023. "Designing limited-stop bus services for minimizing operator and user costs under crowding conditions," Public Transport, Springer, vol. 15(1), pages 97-128, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    2. Seda Yanık & Salim Yılmaz, 2023. "Optimal design of a bus route with short-turn services," Public Transport, Springer, vol. 15(1), pages 169-197, March.
    3. Larrain, Homero & Muñoz, Juan Carlos & Giesen, Ricardo, 2015. "Generation and design heuristics for zonal express services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 201-212.
    4. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    5. Mohammad Sadrani & Ahmad Reza Jafarian-Moghaddam & Mohsen Aboutalebi Esfahani & Amir Masoud Rahimi, 2023. "Designing limited-stop bus services for minimizing operator and user costs under crowding conditions," Public Transport, Springer, vol. 15(1), pages 97-128, March.
    6. Soto, Guillermo & Larrain, Homero & Muñoz, Juan Carlos, 2017. "A new solution framework for the limited-stop bus service design problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 67-85.
    7. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    8. Chew, Joanne S.C. & Zhang, Lele & Gan, Heng S., 2019. "Optimizing limited-stop services with vehicle assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 228-246.
    9. Emily Grisé & Ahmed El-Geneidy, 2020. "Assessing operation and customer perception characteristics of high frequency local and limited-stop bus service in Vancouver, Canada," Public Transport, Springer, vol. 12(3), pages 519-534, October.
    10. Hongguo Ren & Zhenbao Wang & Yanyan Chen, 2020. "Optimal Express Bus Routes Design with Limited-Stop Services for Long-Distance Commuters," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    11. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    12. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    14. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    15. Mei, Yu & Gu, Weihua & Cassidy, Michael & Fan, Wenbo, 2021. "Planning skip-stop transit service under heterogeneous demands," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 503-523.
    16. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    17. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    18. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    19. Gu, Weihua & Amini, Zahra & Cassidy, Michael J., 2016. "Exploring alternative service schemes for busy transit corridors," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 126-145.
    20. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:14:y:2022:i:1:d:10.1007_s12469-022-00293-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.