IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v67y2002i2p189-210.html
   My bibliography  Save this article

Maximum likelihood estimation of nonlinear structural equation models

Author

Listed:
  • Sik-Yum Lee
  • Hong-Tu Zhu

Abstract

No abstract is available for this item.

Suggested Citation

  • Sik-Yum Lee & Hong-Tu Zhu, 2002. "Maximum likelihood estimation of nonlinear structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 189-210, June.
  • Handle: RePEc:spr:psycho:v:67:y:2002:i:2:p:189-210
    DOI: 10.1007/BF02294842
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294842
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roderick McDonald, 1967. "Numerical methods for polynomial models in nonlinear factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 32(1), pages 77-112, March.
    2. Anderson, T. W., 1989. "Linear latent variable models and covariance structures," Journal of Econometrics, Elsevier, vol. 41(1), pages 91-119, May.
    3. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    4. Sik-Yum Lee & Sin-Yu Tsang, 1999. "Constrained maximum likelihood estimation of two-level covariance structure model via EM type algorithms," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 435-450, December.
    5. Jamshid Etezadi-Amoli & Roderick McDonald, 1983. "A second generation nonlinear factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 315-342, September.
    6. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    7. Bagozzi, Richard P & Baumgartner, Hans & Yi, Youjae, 1992. "State versus Action Orientation and the Theory of Reasoned Action: An Application to Coupon Usage," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 18(4), pages 505-518, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.
    2. Ahmed Ouazza & Noureddine Rhomari & Zoubir Zarrouk, 2022. "Kernel method to estimate nonlinear structural equation models," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3465-3480, October.
    3. Ab Mooijaart & Albert Satorra, 2012. "Moment Testing for Interaction Terms in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 77(1), pages 65-84, January.
    4. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    5. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    6. repec:hum:wpaper:sfb649dp2008-062 is not listed on IDEAS
    7. Po-Hsien Huang & Hung Chen & Li-Jen Weng, 2017. "A Penalized Likelihood Method for Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 329-354, June.
    8. Brettel, Malte & Mauer, René & Engelen, Andreas & Küpper, Daniel, 2012. "Corporate effectuation: Entrepreneurial action and its impact on R&D project performance," Journal of Business Venturing, Elsevier, vol. 27(2), pages 167-184.
    9. Fu, Ying-Zi & Tang, Nian-Sheng & Chen, Xing, 2009. "Local influence analysis of nonlinear structural equation models with nonignorable missing outcomes from reproductive dispersion models," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3671-3684, August.
    10. Sik-Yum Lee & Xin-Yuan Song, 2004. "Maximum Likelihood Analysis of a General Latent Variable Model with Hierarchically Mixed Data," Biometrics, The International Biometric Society, vol. 60(3), pages 624-636, September.
    11. Sabiwalsky, Ralf, 2010. "Nonlinear modelling of target leverage with latent determinant variables -- new evidence on the trade-off theory," Review of Financial Economics, Elsevier, vol. 19(4), pages 137-150, October.
    12. Ruixin Guo & Hongtu Zhu & Sy-Miin Chow & Joseph G. Ibrahim, 2012. "Bayesian Lasso for Semiparametric Structural Equation Models," Biometrics, The International Biometric Society, vol. 68(2), pages 567-577, June.
    13. Chengdi Lian & Camila Borelli Zeller & Ke Yang & Weihu Cheng, 2025. "Modified maximum likelihood estimator for censored linear regression model with two-piece generalized t distribution," Statistical Papers, Springer, vol. 66(2), pages 1-45, February.
    14. Lee, Sik-Yum & Lu, Bin & Song, Xin-Yuan, 2006. "Assessing local influence for nonlinear structural equation models with ignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1356-1377, March.
    15. Lee, Sik-Yum & Song, Xin-Yuan, 2003. "Maximum likelihood estimation and model comparison of nonlinear structural equation models with continuous and polytomous variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 125-142, October.
    16. Sabiwalsky, Ralf, 2008. "Nonlinear modeling of target leverage with latent determinant variables: New evidence on the trade-off theory," SFB 649 Discussion Papers 2008-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Sik-Yum Lee & Xin-Yuan Song, 2003. "Model comparison of nonlinear structural equation models with fixed covariates," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 27-47, March.
    18. Tang, Nian-Sheng & Chen, Xing & Fu, Ying-Zi, 2009. "Bayesian analysis of non-linear structural equation models with non-ignorable missing outcomes from reproductive dispersion models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2031-2043, October.
    19. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    20. Ralf Sabiwalsky, 2010. "Nonlinear modelling of target leverage with latent determinant variables — new evidence on the trade‐off theory," Review of Financial Economics, John Wiley & Sons, vol. 19(4), pages 137-150, October.
    21. Jeffrey R. Harring, 2009. "A Nonlinear Mixed Effects Model for Latent Variables," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 293-318, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    2. Roderick McDonald, 1986. "Describing the elephant: Structure and function in multivariate data," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 513-534, December.
    3. Keiji Takai, 2012. "Constrained EM algorithm with projection method," Computational Statistics, Springer, vol. 27(4), pages 701-714, December.
    4. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    5. P. M. Bentler & Chih-Ping Chou, 1987. "Practical Issues in Structural Modeling," Sociological Methods & Research, , vol. 16(1), pages 78-117, August.
    6. Bilgihan, Anil & Madanoglu, Melih & Ricci, Peter, 2016. "Service attributes as drivers of behavioral loyalty in casinos: The mediating effect of attitudinal loyalty," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 14-21.
    7. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    8. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    9. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    10. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    11. Hedibert Freitas Lopes, 2014. "A Tutorial on the Computation of Bayes Factors," Business and Economics Working Papers 200, Unidade de Negocios e Economia, Insper.
    12. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    13. Ricardo Smith Ramírez, 2007. "FIML estimation of treatment effect models with endogenous selection and multiple censored responses via a Monte Carlo EM Algorithm," Working Papers DTE 403, CIDE, División de Economía.
    14. Xu, Yingjiao & Summers, Teresa A. & Belleau, Bonnie D., 2004. "Who buys American alligator?: Predicting purchase intention of a controversial product," Journal of Business Research, Elsevier, vol. 57(10), pages 1189-1198, October.
    15. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    16. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    17. Chen, Derek H. C. & Gawande, Kishore, 2007. "Underlying dimensions of knowledge assessment : factor analysis of the knowledge assessment methodology data," Policy Research Working Paper Series 4216, The World Bank.
    18. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    19. Zhou, Lin & Tang, Yayong, 2021. "Linearly preconditioned nonlinear conjugate gradient acceleration of the PX-EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    20. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:67:y:2002:i:2:p:189-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.