IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v60y2023i2d10.1007_s12597-023-00636-1.html
   My bibliography  Save this article

Heuristics for the shelf space allocation problem

Author

Listed:
  • Kateryna Czerniachowska

    (Wroclaw University of Economics and Business)

  • Krzysztof Michalak

    (Wroclaw University of Economics and Business)

  • Marcin Hernes

    (Wroclaw University of Economics and Business)

Abstract

The retailers’ goals to maximize the profit of the products in stores are realized on the planogram shelves. In this paper, we investigated a practical shelf space allocation model with a visible horizontal and vertical grouping of products into categories, which takes into account the number of facings, capping and nesting of a product. The result is four groups of constraints, such as shelf constraints, product constraints, multi-shelves constraints, and category constraints that are used in the model. We proposed 6 heuristics to solve the planogram profit maximization problem. The developed techniques on which heuristics are based may be applied to other category of management shelf space allocation problems because all of them share the same nature of the problem, i.e., the initial step of creating the allocation of products on the shelf and steps in which shelves are combined. Experiments were based on data sets generated according to contemporary real retail conditions. The efficiency of the designed heuristics has been estimated using the CPLEX solver.

Suggested Citation

  • Kateryna Czerniachowska & Krzysztof Michalak & Marcin Hernes, 2023. "Heuristics for the shelf space allocation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 835-869, June.
  • Handle: RePEc:spr:opsear:v:60:y:2023:i:2:d:10.1007_s12597-023-00636-1
    DOI: 10.1007/s12597-023-00636-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-023-00636-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-023-00636-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Jared M. & Raut, Sumit & Swami, Sanjeev, 2010. "Retail Shelf Allocation: A Comparative Analysis of Heuristic and Meta-Heuristic Approaches," Journal of Retailing, Elsevier, vol. 86(1), pages 94-105.
    2. Bianchi-Aguiar, Teresa & Silva, Elsa & Guimarães, Luis & Carravilla, Maria Antónia & Oliveira, José F., 2018. "Allocating products on shelves under merchandising rules: Multi-level product families with display directions," Omega, Elsevier, vol. 76(C), pages 47-62.
    3. Kim, Gwang & Moon, Ilkyeong, 2021. "Integrated planning for product selection, shelf-space allocation, and replenishment decision with elasticity and positioning effects," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    4. Masoud Rabbani & Navid Salmanzadeh-Meydani & Amir Farshbaf-Geranmayeh & Vahed Fadakar-Gabalou, 2018. "Profit maximizing through 3D shelf space allocation of 2D display orientation items with variable heights of the shelves," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 337-360, June.
    5. Kateryna Czerniachowska & Marcin Hernes, 2020. "A Genetic Algorithm for the Shelf-Space Allocation Problem with Vertical Position Effects," Mathematics, MDPI, vol. 8(11), pages 1-20, October.
    6. Teresa Bianchi-Aguiar & Elsa Silva & Luis Guimarães & Maria Antónia Carravilla & José F. Oliveira & João Günther Amaral & Jorge Liz & Sérgio Lapela, 2016. "Using Analytics to Enhance a Food Retailer’s Shelf-Space Management," Interfaces, INFORMS, vol. 46(5), pages 424-444, October.
    7. Düsterhöft, Tobias & Hübner, Alexander & Schaal, Kai, 2020. "A practical approach to the shelf-space allocation and replenishment problem with heterogeneously sized shelves," European Journal of Operational Research, Elsevier, vol. 282(1), pages 252-266.
    8. Hasmukh Gajjar & Gajendra Adil, 2010. "A piecewise linearization for retail shelf space allocation problem and a local search heuristic," Annals of Operations Research, Springer, vol. 179(1), pages 149-167, September.
    9. Hwang, Hark & Choi, Bum & Lee, Min-Jin, 2005. "A model for shelf space allocation and inventory control considering location and inventory level effects on demand," International Journal of Production Economics, Elsevier, vol. 97(2), pages 185-195, August.
    10. Ruibin Bai & Graham Kendall, 2008. "A Model for Fresh Produce Shelf-Space Allocation and Inventory Management with Freshness-Condition-Dependent Demand," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 78-85, February.
    11. Hübner, Alexander H. & Kuhn, Heinrich, 2012. "Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management," Omega, Elsevier, vol. 40(2), pages 199-209, April.
    12. Andrew Lim & Brian Rodrigues & Xingwen Zhang, 2004. "Metaheuristics with Local Search Techniques for Retail Shelf-Space Optimization," Management Science, INFORMS, vol. 50(1), pages 117-131, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    2. Gecili, Hakan & Parikh, Pratik J., 2022. "Joint shelf design and shelf space allocation problem for retailers," Omega, Elsevier, vol. 111(C).
    3. Kateryna Czerniachowska, 2022. "A genetic algorithm for the retail shelf space allocation problem with virtual segments," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 364-412, March.
    4. Kim, Gwang & Moon, Ilkyeong, 2021. "Integrated planning for product selection, shelf-space allocation, and replenishment decision with elasticity and positioning effects," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    5. Ostermeier, Manuel & Düsterhöft, Tobias & Hübner, Alexander, 2021. "A model and solution approach for store-wide shelf space allocation," Omega, Elsevier, vol. 102(C).
    6. Zhao, Ju & Zhou, Yong-Wu & Wahab, M.I.M., 2016. "Joint optimization models for shelf display and inventory control considering the impact of spatial relationship on demand," European Journal of Operational Research, Elsevier, vol. 255(3), pages 797-808.
    7. Tsao, Yu-Chung & Lu, Jye-Chyi & An, Na & Al-Khayyal, Faiz & Lu, Richard W. & Han, Guanghua, 2014. "Retailer shelf-space management with trade allowance: A Stackelberg game between retailer and manufacturers," International Journal of Production Economics, Elsevier, vol. 148(C), pages 133-144.
    8. Alexander Hübner & Kai Schaal, 2017. "Effect of replenishment and backroom on retail shelf-space planning," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 123-156, June.
    9. Masoud Rabbani & Navid Salmanzadeh-Meydani & Amir Farshbaf-Geranmayeh & Vahed Fadakar-Gabalou, 2018. "Profit maximizing through 3D shelf space allocation of 2D display orientation items with variable heights of the shelves," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 337-360, June.
    10. Alexander Hübner & Fabian Schäfer & Kai N. Schaal, 2020. "Maximizing Profit via Assortment and Shelf‐Space Optimization for Two‐Dimensional Shelves," Production and Operations Management, Production and Operations Management Society, vol. 29(3), pages 547-570, March.
    11. Bianchi-Aguiar, Teresa & Silva, Elsa & Guimarães, Luis & Carravilla, Maria Antónia & Oliveira, José F., 2018. "Allocating products on shelves under merchandising rules: Multi-level product families with display directions," Omega, Elsevier, vol. 76(C), pages 47-62.
    12. Schaal, Kai & Hübner, Alexander, 2018. "When does cross-space elasticity matter in shelf-space planning? A decision analytics approach," Omega, Elsevier, vol. 80(C), pages 135-152.
    13. Flamand, Tulay & Ghoniem, Ahmed & Haouari, Mohamed & Maddah, Bacel, 2018. "Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach," Omega, Elsevier, vol. 81(C), pages 134-149.
    14. Caglar Gencosman, Burcu & Begen, Mehmet A., 2022. "Exact optimization and decomposition approaches for shelf space allocation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 432-447.
    15. Yan-Kwang Chen & Shi-Xin Weng & Tsai-Pei Liu, 2020. "Teaching–Learning Based Optimization (TLBO) with Variable Neighborhood Search to Retail Shelf-Space Allocation," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    16. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    17. Düsterhöft, Tobias & Hübner, Alexander & Schaal, Kai, 2020. "A practical approach to the shelf-space allocation and replenishment problem with heterogeneously sized shelves," European Journal of Operational Research, Elsevier, vol. 282(1), pages 252-266.
    18. Schäfer, Fabian & Hense, Jonas & Hübner, Alexander, 2023. "An analytical assessment of demand effects in omni-channel assortment planning," Omega, Elsevier, vol. 115(C).
    19. Hense, Jonas & Hübner, Alexander, 2022. "Assortment optimization in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 124-140.
    20. Hübner, Alexander & Schaal, Kai, 2017. "An integrated assortment and shelf-space optimization model with demand substitution and space-elasticity effects," European Journal of Operational Research, Elsevier, vol. 261(1), pages 302-316.

    More about this item

    Keywords

    Heuristics; Retailing; Revenue management; Merchandising; Shelf space allocation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:60:y:2023:i:2:d:10.1007_s12597-023-00636-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.