IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i3d10.1007_s11069-017-2937-9.html
   My bibliography  Save this article

Optimal scheduling of household appliances for smart home energy management considering demand response

Author

Listed:
  • Xinhui Lu

    (Hefei University of Technology
    Ministry of Education)

  • Kaile Zhou

    (Hefei University of Technology
    Ministry of Education)

  • Felix T. S. Chan

    (The Hong Kong Polytechnic University)

  • Shanlin Yang

    (Hefei University of Technology
    Ministry of Education)

Abstract

As an important part of demand-side management, residential demand response (DR) can not only reduce consumer’s electricity costs, but also improve the stability of power system operation. In this regard, this paper proposes an optimal scheduling model of household appliances for smart home energy management considering DR. The model includes electricity cost, incentive and inconvenience of consumers under time-of-use (TOU) electricity price. Further, this paper discusses the influence of inconvenience weighting factor on total costs. At the same time, the influence of incentive on optimization results is also analyzed. The simulation results show the effectiveness of the proposed model, which can reduce 34.71% of consumer’s total costs. It also illustrates that the total costs will be raised with the increase in inconvenience weighting factor. Thus, consumers will choose whether to participate in DR programs according to their preferences. Moreover, the result demonstrates that incentives are conducive to shifting load and reducing the consumer’s total energy costs. The presented study provides new insight for the applications of residential DR.

Suggested Citation

  • Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2937-9
    DOI: 10.1007/s11069-017-2937-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2937-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2937-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing-Li Fan & Bao-Jun Tang & Hao Yu & Yun-Bing Hou & Yi-Ming Wei, 2015. "Impact of climatic factors on monthly electricity consumption of China’s sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2027-2037, January.
    2. Naiming Xie & Alan Pearman, 2014. "Forecasting energy consumption in China following instigation of an energy-saving policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 639-659, November.
    3. Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
    4. Jing-Li Fan & Bao-Jun Tang & Hao Yu & Yun-Bing Hou & Yi-Ming Wei, 2015. "Impacts of socioeconomic factors on monthly electricity consumption of China’s sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2039-2047, January.
    5. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    6. Ericson, Torgeir, 2009. "Direct load control of residential water heaters," Energy Policy, Elsevier, vol. 37(9), pages 3502-3512, September.
    7. Lan-Cui Liu & Gang Wu & Yue-Jun Zhang, 2015. "Investigating the residential energy consumption behaviors in Beijing: a survey study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 243-263, January.
    8. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    9. Malin Song & Guijun Zhang & Kuangnan Fang & Jing Zhang, 2016. "Regional operational and environmental performance evaluation in China: non-radial DEA methodology under natural and managerial disposability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 243-265, November.
    10. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhiaa Halboot Muhsen & Haider Tarish Haider & Yaarob Al-Nidawi & Ghadeer Ghazi Shayea, 2023. "Operational Scheduling of Household Appliances by Using Triple-Objective Optimization Algorithm Integrated with Multi-Criteria Decision Making," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    2. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    3. Chen Wang & Kaile Zhou & Lanlan Li & Shanlin Yang, 2018. "Multi-agent simulation-based residential electricity pricing schemes design and user selection decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1309-1327, February.
    4. Muhammad Saidu Aliero & Muhammad Asif & Imran Ghani & Muhammad Fermi Pasha & Seung Ryul Jeong, 2022. "Systematic Review Analysis on Smart Building: Challenges and Opportunities," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    5. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    6. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    7. Essiet, Ima O. & Sun, Yanxia & Wang, Zenghui, 2019. "Optimized energy consumption model for smart home using improved differential evolution algorithm," Energy, Elsevier, vol. 172(C), pages 354-365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    2. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    3. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    4. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    5. Wenbo Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Household factors and adopting intention of battery electric vehicles: a multi-group structural equation model analysis among consumers in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 945-960, June.
    6. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    7. Chen, Wen & Zhou, Kaile & Yang, Shanlin & Wu, Cheng, 2017. "Data quality of electricity consumption data in a smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 98-105.
    8. Shengnan Xing & Jindian Lu & Chengmei Zhang & Shuang Sun, 2019. "Does line loss broaden the deviation between the added value of industry and the industrial electricity consumption in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1635-1648, August.
    9. Guo, Zhifeng & Zhou, Kaile & Zhang, Chi & Lu, Xinhui & Chen, Wen & Yang, Shanlin, 2018. "Residential electricity consumption behavior: Influencing factors, related theories and intervention strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 399-412.
    10. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    11. Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
    12. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    13. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    14. Zixia Xiang & Yanhong Yin & Yuanwen He, 2018. "A Microeconomic Methodology to Evaluate Energy Efficiency by Consumption Behaviors and Strategies to Improve Energy Efficiency," Sustainability, MDPI, vol. 10(11), pages 1-11, November.
    15. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    16. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.
    17. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    18. Hassan Ranjbarzadeh & Seyed Masoud Moghaddas Tafreshi & Mohd Hasan Ali & Abbas Z. Kouzani & Suiyang Khoo, 2022. "A Probabilistic Model for Minimization of Solar Energy Operation Costs as Well as CO 2 Emissions in a Multi-Carrier Microgrid (MCMG)," Energies, MDPI, vol. 15(9), pages 1-24, April.
    19. Amir Sadegh Zakeri & Hossein Askarian Abyaneh, 2017. "Transmission Expansion Planning Using TLBO Algorithm in the Presence of Demand Response Resources," Energies, MDPI, vol. 10(9), pages 1-15, September.
    20. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2937-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.