IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp98-105.html
   My bibliography  Save this article

Data quality of electricity consumption data in a smart grid environment

Author

Listed:
  • Chen, Wen
  • Zhou, Kaile
  • Yang, Shanlin
  • Wu, Cheng

Abstract

With the increasing penetration of traditional and emerging information technologies in the electric power industry, together with the rapid development of electricity market reform, the electric power industry has accumulated a large amount of data. Data quality issues have become increasingly prominent, which affect the accuracy and effectiveness of electricity data mining and energy big data analytics. It is also closely related to the safety and reliability of the power system operation and management based on data-driven decision support. In this paper, we study the data quality of electricity consumption data in a smart grid environment. First, we analyze the significance of data quality. Also, the definition and classification of data quality issues are explained. Then we analyze the data quality of electricity consumption data and introduce the characteristics of electricity consumption data in a smart grid environment. The data quality issues of electricity consumption data are divided into three types, namely noise data, incomplete data and outlier data. We make a detailed discussion on these three types of data quality issues. In view of that outlier data is one of the most prominent issues in electricity consumption data, so we mainly focus on the outlier detection of electricity consumption data. This paper introduces the causes of electricity consumption outlier data and illustrates the significance of the electricity consumption outlier data from the negative and positive aspects respectively. Finally, the focus of this paper is to provide a review on the detection methods of electricity consumption outlier data. The methods are mainly divided into two categories, namely the data mining-based and the state estimation-based methods.

Suggested Citation

  • Chen, Wen & Zhou, Kaile & Yang, Shanlin & Wu, Cheng, 2017. "Data quality of electricity consumption data in a smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 98-105.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:98-105
    DOI: 10.1016/j.rser.2016.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Kai-le & Yang, Shan-lin & Shen, Chao, 2013. "A review of electric load classification in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 103-110.
    2. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    3. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    4. Zhou, Kaile & Yang, Shanlin & Chen, Zhiqiang & Ding, Shuai, 2014. "Optimal load distribution model of microgrid in the smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 304-310.
    5. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    6. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    7. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noussan, Michel, 2018. "Performance based approach for electricity generation in smart grids," Applied Energy, Elsevier, vol. 220(C), pages 231-241.
    2. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    3. Viktorija Bobinaite & Marialaura Di Somma & Giorgio Graditi & Irina Oleinikova, 2019. "The Regulatory Framework for Market Transparency in Future Power Systems under the Web-of-Cells Concept," Energies, MDPI, vol. 12(5), pages 1-26, March.
    4. Jing Li & Meng Guo & Kevin Lo, 2019. "Estimating Housing Vacancy Rates in Rural China Using Power Consumption Data," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    5. Ahmad, Tanveer & Chen, Huanxin & Wang, Jiangyu & Guo, Yabin, 2018. "Review of various modeling techniques for the detection of electricity theft in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2916-2933.
    6. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    7. Minkyung Kim & Sangdon Park & Joohyung Lee & Yongjae Joo & Jun Kyun Choi, 2017. "Learning-Based Adaptive Imputation Methodwith kNN Algorithm for Missing Power Data," Energies, MDPI, vol. 10(10), pages 1-20, October.
    8. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    9. Choi, Jongwoo & Lee, Il-Woo & Cha, Suk-Won, 2022. "Analysis of data errors in the solar photovoltaic monitoring system database: An overview of nationwide power plants in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    2. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    3. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    4. Zhou, Kaile & Yang, Shanlin, 2015. "A framework of service-oriented operation model of China׳s power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 719-725.
    5. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    6. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    7. Guo, Zhifeng & Zhou, Kaile & Zhang, Chi & Lu, Xinhui & Chen, Wen & Yang, Shanlin, 2018. "Residential electricity consumption behavior: Influencing factors, related theories and intervention strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 399-412.
    8. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    9. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    10. Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
    11. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    14. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    15. Chen Wang & Kaile Zhou & Lanlan Li & Shanlin Yang, 2018. "Multi-agent simulation-based residential electricity pricing schemes design and user selection decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1309-1327, February.
    16. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    17. Gökhan Demirdöğen & Zeynep Işık & Yusuf Arayici, 2020. "Lean Management Framework for Healthcare Facilities Integrating BIM, BEPS and Big Data Analytics," Sustainability, MDPI, vol. 12(17), pages 1-33, August.
    18. A-Ru-Han Bao & Yao Liu & Jun Dong & Zheng-Peng Chen & Zhen-Jie Chen & Chen Wu, 2022. "Evolutionary Game Analysis of Co-Opetition Strategy in Energy Big Data Ecosystem under Government Intervention," Energies, MDPI, vol. 15(6), pages 1-24, March.
    19. Li, Weilin & Xu, Peng & Lu, Xing & Wang, Huilong & Pang, Zhihong, 2016. "Electricity demand response in China: Status, feasible market schemes and pilots," Energy, Elsevier, vol. 114(C), pages 981-994.
    20. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:98-105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.