IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i1d10.1007_s11069-016-2193-4.html
   My bibliography  Save this article

An efficient artificial intelligence model for prediction of tropical storm surge

Author

Listed:
  • M. Reza Hashemi

    (University of Rhode Island)

  • Malcolm L. Spaulding

    (University of Rhode Island)

  • Alex Shaw

    (University of Rhode Island)

  • Hamed Farhadi

    (Ferdowsi University of Mashhad)

  • Matt Lewis

    (Bangor University)

Abstract

Process-based models have been widely used for storm surge predictions, but their high computational demand is a major drawback in some applications such as rapid forecasting. Few efforts have been made to employ previous databases of synthetic/real storms and provide more efficient surge predictions (e.g. using storm similarity of an individual storm to those in the database). Here, we develop an alternative efficient and robust artificial intelligent model, which predicts the peak storm surge using the tropical storm parameters: central pressure, radius to maximum winds, forward velocity, and storm track. The US Army Corp of Engineers, North Atlantic Comprehensive Coastal Study, has recently performed numerical simulations of 1050 synthetic tropical storms, which statistically represent tropical storms, using a coupled high resolution wave–surge modeling system for the east coast of the US, from Cape Hatteras to the Canadian border. This study has provided an unprecedented dataset which can be used to train artificial intelligence models for surge prediction in those areas. While numerical simulation of a storm surge at this scale and resolution (over 6 million elements scaling from 20 m to more than 100 km) is extremely expensive, the artificial intelligence takes the advantage of the previous simulations, and effectively learns the relationship between storm parameters representing storm forcing and surge. The artificial neural network method which was used for this study, was shown to outperform support vector machine for extreme storms. ANN model, which is based on a neurobiological analogy, can be conveniently developed, retrained by new data, and is nonparametric. The AI model, which was developed for Rhode Island, was validated using a set of randomly selected synthetic storms as well as real tropical storms in this region. The model performance was found satisfactory with root-mean-square error of

Suggested Citation

  • M. Reza Hashemi & Malcolm L. Spaulding & Alex Shaw & Hamed Farhadi & Matt Lewis, 2016. "An efficient artificial intelligence model for prediction of tropical storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 471-491, May.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:1:d:10.1007_s11069-016-2193-4
    DOI: 10.1007/s11069-016-2193-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2193-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2193-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Condon & Y. Peter Sheng, 2012. "Evaluation of coastal inundation hazard for present and future climates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 345-373, June.
    2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    3. Matt Lewis & Kevin Horsburgh & Paul Bates, 2014. "Bay of Bengal cyclone extreme water level estimate uncertainty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 983-996, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Lecacheux & J. Rohmer & F. Paris & R. Pedreros & H. Quetelard & F. Bonnardot, 2021. "Toward the probabilistic forecasting of cyclone-induced marine flooding by overtopping at Reunion Island aided by a time-varying random-forest classification approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 227-251, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    2. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    3. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    4. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    5. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    6. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    7. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    8. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    9. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    10. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    11. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    12. Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
    13. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    14. CIOBANU Dumitru & BAR Mary Violeta, 2013. "On The Prediction Of Exchange Rate Dollar/Euro With An Svm Model," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 65(2), pages 91-109.
    15. Chenghao Zhong & Wengao Lou & Yongzeng Lai, 2023. "A Projection Pursuit Dynamic Cluster Model for Tourism Safety Early Warning and Its Implications for Sustainable Tourism," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    16. Nastac, Iulian & Dobrescu, Emilian & Pelinescu, Elena, 2007. "Neuro-Adaptive Model for Financial Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 19-41, September.
    17. Joo, Rocío & Bertrand, Sophie & Chaigneau, Alexis & Ñiquen, Miguel, 2011. "Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery," Ecological Modelling, Elsevier, vol. 222(4), pages 1048-1059.
    18. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    19. Alejandro Parot & Kevin Michell & Werner D. Kristjanpoller, 2019. "Using Artificial Neural Networks to forecast Exchange Rate, including VAR‐VECM residual analysis and prediction linear combination," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 3-15, January.
    20. Yaren Aydın & Celal Cakiroglu & Gebrail Bekdaş & Ümit Işıkdağ & Sanghun Kim & Junhee Hong & Zong Woo Geem, 2023. "Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:1:d:10.1007_s11069-016-2193-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.