IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p983-996.html
   My bibliography  Save this article

Bay of Bengal cyclone extreme water level estimate uncertainty

Author

Listed:
  • Matt Lewis
  • Kevin Horsburgh
  • Paul Bates

Abstract

Accurate estimates of storm surge magnitude and frequency are essential to coastal flood risk studies. Much research has focused on tide–surge interaction and joint probability techniques to combine multiple cyclone characteristics. In the Bay of Bengal, extreme water levels are derived from numerical storm surge models based on an idealised cyclone event; however, uncertainty within such calculations for this region is poorly understood, especially when propagated through to the flood hazard. We use the IBTrACs data set to estimate natural variability in four key parameters used to describe an idealised cyclone and create a set of idealised but equally likely “1 in 50 year” recurrence interval cyclone events. Each idealised cyclone is then used to force a storm surge model to give predicted peak water levels along the northern Bay of Bengal coast. Finally, extreme water level uncertainty is propagated through an inundation model to predict flood extent and depth over inland coastal floodplains. The descriptive parameters of 18 cyclone events (between 1990 and 2008) appear to show no statistically significant variation (at the 5 % level) due to landfall location, which allows us to pool characteristics for the entire Bay of Bengal. We find that the natural variability of cyclone parameters translates into large uncertainty both for storm surge height (of the order of metres) and for coastal inundation (hundreds of km 2 ). Using the variability estimates for a 1-in-50-year cyclone event making landfall at the 2007 Sidr location, cyclone central pressure drop uncertainty had the greatest effect upon simulated storm surge magnitude. However, uncertainty within cyclone track characteristics (track speed, landfall and genesis location) has greater influence on subsequent inundation extent. Storm surge hazard uncertainty due to cyclone parameter variability was found to be comparable to the inundation difference simulated when the peak surge coincided with either a mean spring high or low water. Our research indicates the importance of improving extreme water level estimates along the Bay of Bengal coastline for robust flood hazard management decisions in the Bay of Bengal. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Matt Lewis & Kevin Horsburgh & Paul Bates, 2014. "Bay of Bengal cyclone extreme water level estimate uncertainty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 983-996, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:983-996
    DOI: 10.1007/s11069-014-1046-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1046-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1046-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bimal Paul, 2009. "Why relatively fewer people died? The case of Bangladesh’s Cyclone Sidr," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(2), pages 289-304, August.
    2. Donald Resio & Jennifer Irish & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment – part 1: basic concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 163-182, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Reza Hashemi & Malcolm L. Spaulding & Alex Shaw & Hamed Farhadi & Matt Lewis, 2016. "An efficient artificial intelligence model for prediction of tropical storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 471-491, May.
    2. Matthew Wadey & Sally Brown & Robert J. Nicholls & Ivan Haigh, 2017. "Coastal flooding in the Maldives: an assessment of historic events and their implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 131-159, October.
    3. Nicolas Bruneau & Juergen Grieser & Thomas Loridan & Enrica Bellone & Shree Khare, 2017. "The impact of extra-tropical transitioning on storm surge and waves in catastrophe risk modelling: application to the Japanese coastline," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 649-667, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Heidarzadeh & Takumu Iwamoto & Tomohiro Takagawa & Hiroshi Takagi, 2021. "Field surveys and numerical modeling of the August 2016 Typhoon Lionrock along the northeastern coast of Japan: the first typhoon making landfall in Tohoku region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1-19, January.
    2. Bimal Paul, 2010. "Human injuries caused by Bangladesh’s cyclone sidr: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 483-495, August.
    3. Abu Nasar Mohammad Abdullah & Kerstin Katharina Zander & Bronwyn Myers & Natasha Stacey & Stephen Thomas Garnett, 2016. "A short-term decrease in household income inequality in the Sundarbans, Bangladesh, following Cyclone Aila," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1103-1123, September.
    4. Antony Joseph & R. Prabhudesai & Prakash Mehra & V. Sanil Kumar & K. Radhakrishnan & Vijay Kumar & K. Ashok Kumar & Yogesh Agarwadekar & U. Bhat & Ryan Luis & Pradhan Rivankar & Blossom Viegas, 2011. "Response of west Indian coastal regions and Kavaratti lagoon to the November-2009 tropical cyclone Phyan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 293-312, May.
    5. Bimal Paul & Munshi Rahman & Bankim Rakshit, 2011. "Post-Cyclone Sidr illness patterns in coastal Bangladesh: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 841-852, March.
    6. Atsuko Nonomura & Kazuhito Fujisawa & Mari Takahashi & Hideo Matsumoto & Shuichi Hasegawa, 2020. "Analysis of the Actions and Motivations of a Community during the 2017 Torrential Rains in Northern Kyushu, Japan," IJERPH, MDPI, vol. 17(7), pages 1-15, April.
    7. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.
    8. Asirul Haque & Md. Habibur Rahman & Md. Habibur Rahman & Dilara Rahman, 2019. "An Evaluation of Sea Level Rise Vulnerability and Resilience Strategy to Climate Change in the Coastline of Bangladesh," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(2), pages 56-70, March.
    9. Md. Sazedur Rahman* & Md. Ashfikur Rahman, 2019. "Impacts of Climate Change on Crop Production in Bangladesh: A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 5(1), pages 6-14, 01-2019.
    10. Donald Resio & Jennifer Irish & Joannes Westerink & Nancy Powell, 2013. "The effect of uncertainty on estimates of hurricane surge hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1443-1459, April.
    11. Jennifer Irish & Donald Resio & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment. Part 2: Quantification of spatial attributes of response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 183-205, October.
    12. Hasan, Mohammad Monirul, 2014. "Climate change induced marginality: Households’ vulnerability in the meal consumption frequencies," MPRA Paper 88047, University Library of Munich, Germany.
    13. Saleh Ahmed & Elizabeth Eklund, 2019. "Rural Accessibility, Rural Development, and Natural Disasters in Bangladesh," Journal of Developing Societies, , vol. 35(3), pages 391-411, September.
    14. Prof.As.Dr. Fatbardha Osmanaga, 2017. "The Impact of Self-Esteem on the Attitudes Towards Homosexuality," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 3, May - Aug.
    15. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    16. Md Aboul Fazal Younus, 2017. "An assessment of vulnerability and adaptation to cyclones through impact assessment guidelines: a bottom-up case study from Bangladesh coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1437-1459, December.
    17. Alejandra Gijón Mancheño & Peter M. J. Herman & Sebastiaan N. Jonkman & Swarna Kazi & Ignacio Urrutia & Mathijs van Ledden, 2021. "Mapping Mangrove Opportunities with Open Access Data: A Case Study for Bangladesh," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    18. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    19. Md. Shaharier Alam & Torit Chakraborty & Md. Zakir Hossain & Khan Rubayet Rahaman, 2023. "Evacuation dilemmas of coastal households during cyclone Amphan and amidst the COVID-19 pandemic: a study of the Southwestern region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 507-537, January.
    20. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:983-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.