IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v38y2025i1d10.1007_s13563-024-00435-0.html
   My bibliography  Save this article

Cointegration and causality testing in time series for multivariate analysis through minerals industry case studies

Author

Listed:
  • Zhanbolat Magzumov

    (McGill University)

  • Mustafa Kumral

    (McGill University)

Abstract

In the minerals industry, inadequately addressing technical, economic, social, environmental, and geological uncertainties can lead to poor decisions and unexpected outcomes, such as financial losses, accidents, and liabilities. Correlation analysis is widely used in minerals-related research to estimate variables, but erroneous inferences can be made about causal relationships between variables, leading to higher risk, for example, relationships between discount rate and commodity price, interest rate and inflation, energy costs and gold price, vibration and component wear in mining equipment, and abrasive mineral characteristics and drill bit wear. Therefore, mine valuation and risk analysis in the minerals industry require a strong understanding of the nature of associations between variables. The present paper demonstrates how causality could be used in the mining industry. Four tests were implemented and compared through two case studies. The cointegration test revealed the presence of a long-term connection between cointegrated variables. The Granger, variable-lag Granger, and Toda-Yamamoto causality tests analyzed the nature, lag, and direction of causal relationships between variables. Due to its dynamic time-warping algorithm, the variable-lag Granger causality test showed a robust causal association without any attachments to the possible lag or direction. Two case studies showed that causality tests best facilitate decision-making in the minerals industry by improving understanding of associations between variables.

Suggested Citation

  • Zhanbolat Magzumov & Mustafa Kumral, 2025. "Cointegration and causality testing in time series for multivariate analysis through minerals industry case studies," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 21-35, March.
  • Handle: RePEc:spr:minecn:v:38:y:2025:i:1:d:10.1007_s13563-024-00435-0
    DOI: 10.1007/s13563-024-00435-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-024-00435-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-024-00435-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Venus Khim-Sen Liew, 2004. "Which Lag Length Selection Criteria Should We Employ?," Economics Bulletin, AccessEcon, vol. 3(33), pages 1-9.
    2. Stephan B. Bruns & David I. Stern, 2019. "Lag length selection and p-hacking in Granger causality testing: prevalence and performance of meta-regression models," Empirical Economics, Springer, vol. 56(3), pages 797-830, March.
    3. Hoover,Kevin D., 2001. "Causality in Macroeconomics," Cambridge Books, Cambridge University Press, number 9780521002882, June.
    4. Rakesh Shahani & Utkarsh Singhal, 2023. "Do efficient commodity markets co-move: evidence from Indian base metals market," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 413-425, September.
    5. Soytas, Ugur & Sari, Ramazan & Hammoudeh, Shawkat & Hacihasanoglu, Erk, 2009. "World oil prices, precious metal prices and macroeconomy in Turkey," Energy Policy, Elsevier, vol. 37(12), pages 5557-5566, December.
    6. Helmut Lütkepohl & Pentti Saikkonen & Carsten Trenkler, 2001. "Maximum eigenvalue versus trace tests for the cointegrating rank of a VAR process," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-8.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    9. Gary Gorton & K. Geert Rouwenhorst, 2006. "Facts and Fantasies about Commodity Futures," Financial Analysts Journal, Taylor & Francis Journals, vol. 62(2), pages 47-68, March.
    10. Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
    11. Cheung, Yin-Wong & Lai, Kon S, 1993. "Finite-Sample Sizes of Johansen's Likelihood Ration Tests for Conintegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 55(3), pages 313-328, August.
    12. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, March.
    13. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    14. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    15. Jerrett, Daniel & Cuddington, John T., 2008. "Broadening the statistical search for metal price super cycles to steel and related metals," Resources Policy, Elsevier, vol. 33(4), pages 188-195, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    2. Simplice Asongu, 2014. "REER Imbalances and Macroeconomic Adjustments in the Proposed West African Monetary Union," South African Journal of Economics, Economic Society of South Africa, vol. 82(2), pages 276-289, June.
    3. Kanjilal, Kakali & Ghosh, Sajal, 2017. "Dynamics of crude oil and gold price post 2008 global financial crisis – New evidence from threshold vector error-correction model," Resources Policy, Elsevier, vol. 52(C), pages 358-365.
    4. Erten, Bilge & Ocampo, José Antonio, 2013. "Super Cycles of Commodity Prices Since the Mid-Nineteenth Century," World Development, Elsevier, vol. 44(C), pages 14-30.
    5. Mohamed Maher & Yanzhi Zhao, 2022. "Do Political Instability and Military Expenditure Undermine Economic Growth in Egypt? Evidence from the ARDL Approach," Defence and Peace Economics, Taylor & Francis Journals, vol. 33(8), pages 956-979, November.
    6. repec:cii:cepiei:2012-q3-131-4 is not listed on IDEAS
    7. Tang, Chor Foon, 2010. "The determinants of health expenditure in Malaysia: A time series analysis," MPRA Paper 24356, University Library of Munich, Germany.
    8. Taufiq Choudhry & Mohammad Hasan, 2008. "Exchange Rate Regime and Demand for Reserves: Evidence from Kenya, Mexico and Philippines," Open Economies Review, Springer, vol. 19(2), pages 167-181, April.
    9. Mohsen Bahmani-Oskooee & Taggert Brooks, 2003. "A new criteria for selecting the optimum lags in Johansen's cointegration technique," Applied Economics, Taylor & Francis Journals, vol. 35(8), pages 875-880.
    10. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.
    11. Pål Boug & Håvard Hungnes & Takamitsu Kurita, 2024. "The empirical modelling of house prices and debt revisited: a policy-oriented perspective," Empirical Economics, Springer, vol. 66(1), pages 369-404, January.
    12. Pär Österholm, 2005. "The Taylor Rule: A Spurious Regression?," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
    13. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    14. Charles Yuji Horioka & Akiko Terada-Hagiwara, 2016. "The Impact of Pre-marital Sex Ratios on Household Saving in Two Asian Countries: The Competitive Saving Motive Revisited," ISER Discussion Paper 0975, Institute of Social and Economic Research, The University of Osaka.
    15. Martin Schmidt, 2003. "Monetary dynamics: a market approach," Applied Economics, Taylor & Francis Journals, vol. 35(2), pages 139-152.
    16. Scott Hendry, 1995. "Long-Run Demand for M1," Macroeconomics 9511001, University Library of Munich, Germany.
    17. Tiwari, Aviral Kumar, 2012. "An empirical investigation of causality between producers' price and consumers' price indices in Australia in frequency domain," Economic Modelling, Elsevier, vol. 29(5), pages 1571-1578.
    18. Mansor H. Ibrahim, 2006. "Stock Prices and Bank Loan Dynamics in a Developing Country: The Case of Malaysia," Journal of Applied Economics, Taylor & Francis Journals, vol. 9(1), pages 71-89, May.
    19. Adu, Raymond & Litsios, Ioannis & Baimbridge, Mark, 2019. "Real exchange rate and asymmetric shocks in the West African Monetary Zone (WAMZ)," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 59(C), pages 232-249.
    20. MacDonald, Ronald & Marsh, Ian W., 2004. "Currency spillovers and tri-polarity: a simultaneous model of the US dollar, German mark and Japanese yen," Journal of International Money and Finance, Elsevier, vol. 23(1), pages 99-111, February.
    21. Chung, Tin-fah & Ariff, M., 2016. "A test of the linkage among money supply, liquidity and share prices in Asia," Japan and the World Economy, Elsevier, vol. 39(C), pages 48-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:38:y:2025:i:1:d:10.1007_s13563-024-00435-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.