IDEAS home Printed from
   My bibliography  Save this article

Implications of uncertainty and scale in carbon emission estimates on locally appropriate designs to reduce emissions from deforestation and degradation (REDD+)


  • Betha Lusiana
  • Meine Noordwijk
  • Feri Johana
  • Gamma Galudra
  • S. Suyanto
  • Georg Cadisch


This study combined uncertainty analysis of carbon emissions with local stakeholders' perspectives to develop an effective Reducing Emission from Deforestation and Degradation (REDD+) scheme at the district level. Uncertainty of carbon emission estimates depends on scale while local stakeholders' views on plausible REDD+ schemes influence and limit transaction costs. The uncertainty analysis formed the basis for determining an appropriate scale for monitoring carbon emission estimates as performance measures for REDD+ incentives. Our analysis of stakeholder’ perspectives explored (i) potential location and activities for lower emission development pathways, and (ii) perceived fair allocation of REDD+incentives. Our case study focused on frontier forest in Tanjung Jabung Barat District, Jambi, Indonesia. The uncertainty analysis used Monte Carlo simulation techniques using known inaccuracy of land cover classification and variation in carbon stocks assessment per land cover type. With decreasing spatial resolution of carbon emission maps, uncertainty in carbon estimates decreased. At 1 km 2 resolution uncertainty dropped below 5 %, retaining most of the coarser spatial variation in the district. Fairness, efficiency and transaction cost issues in the design of REDD+ mechanisms were readily recognized by local stakeholders, who converged on an equal allocation to short-term efficiency (emission reduction activities) and long-term fairness (alternative livelihood development). A striking difference occurred in desirable transaction costs (which include monitoring, reporting and verification), with Non-Governmental Organizations (NGOs) aiming for 8 %, while government and researchers accepted transaction costs of 40 %. Feasible measures for emission reduction in the district, derived from a participatory planning process, are compatible with the 1 km 2 spatial resolution of performance measures. Copyright The Author(s) 2014

Suggested Citation

  • Betha Lusiana & Meine Noordwijk & Feri Johana & Gamma Galudra & S. Suyanto & Georg Cadisch, 2014. "Implications of uncertainty and scale in carbon emission estimates on locally appropriate designs to reduce emissions from deforestation and degradation (REDD+)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 757-772, August.
  • Handle: RePEc:spr:masfgc:v:19:y:2014:i:6:p:757-772
    DOI: 10.1007/s11027-013-9501-z

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ellen Douglas & Stanley Wood & Kate Sebastian & Charles Vörösmarty & Kenneth Chomitz & Thomas Tomich, 2007. "Policy implications of a pan-tropic assessment of the simultaneous hydrological and biodiversity impacts of deforestation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 211-232, January.
    2. Wunder, Sven & Engel, Stefanie & Pagiola, Stefano, 2008. "Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries," Ecological Economics, Elsevier, vol. 65(4), pages 834-852, May.
    3. Cattaneo, Andrea, 2011. "Robust design of multiscale programs to reduce deforestation," Environment and Development Economics, Cambridge University Press, vol. 16(4), pages 455-478, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ermias Aynekulu & Marta Suber & Meine van Noordwijk & Jacobo Arango & James M. Roshetko & Todd S. Rosenstock, 2020. "Carbon Storage Potential of Silvopastoral Systems of Colombia," Land, MDPI, vol. 9(9), pages 1-12, September.
    2. Haurez, Barbara & Daïnou, Kasso & Vermeulen, Cédric & Kleinschroth, Fritz & Mortier, Frédéric & Gourlet-Fleury, Sylvie & Doucet, Jean-Louis, 2017. "A look at Intact Forest Landscapes (IFLs) and their relevance in Central African forest policy," Forest Policy and Economics, Elsevier, vol. 80(C), pages 192-199.
    3. Jichuan Sheng, 2017. "Effect of Uncertainties in Estimated Carbon Reduction from Deforestation and Forest Degradation on Required Incentive Payments in Developing Countries," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    4. Robin Matthews & Meine Noordwijk & Eric Lambin & Patrick Meyfroidt & Joyeeta Gupta & Louis Verchot & Kristell Hergoualc’h & Edzo Veldkamp, 2014. "Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 907-925, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bottazzi, Patrick & Cattaneo, Andrea & Rocha, David Crespo & Rist, Stephan, 2013. "Assessing sustainable forest management under REDD+: A community-based labour perspective," Ecological Economics, Elsevier, vol. 93(C), pages 94-103.
    2. Alix-Garcia, Jennifer & Wolff, Hendrik, 2014. "Payment for Ecosystem Services from Forests," IZA Discussion Papers 8179, Institute of Labor Economics (IZA).
    3. Cooke, Benjamin & Corbo-Perkins, Gabriella, 2018. "Co-opting and resisting market based instruments for private land conservation," Land Use Policy, Elsevier, vol. 70(C), pages 172-181.
    4. Patrick Bottazzi & David Crespo & Harry Soria & Hy Dao & Marcelo Serrudo & Jean Paul Benavides & Stefan Schwarzer & Stephan Rist, 2014. "Carbon Sequestration in Community Forests: Trade-offs, Multiple Outcomes and Institutional Diversity in the Bolivian Amazon," Development and Change, International Institute of Social Studies, vol. 45(1), pages 105-131, January.
    5. Sims, Katharine R.E. & Alix-Garcia, Jennifer M., 2017. "Parks versus PES: Evaluating direct and incentive-based land conservation in Mexico," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 8-28.
    6. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    7. Sommerville, Matthew & Jones, Julia P.G. & Rahajaharison, Michael & Milner-Gulland, E.J., 2010. "The role of fairness and benefit distribution in community-based Payment for Environmental Services interventions: A case study from Menabe, Madagascar," Ecological Economics, Elsevier, vol. 69(6), pages 1262-1271, April.
    8. Zabel, Astrid & Engel, Stefanie, 2010. "Performance payments: A new strategy to conserve large carnivores in the tropics?," Ecological Economics, Elsevier, vol. 70(2), pages 405-412, December.
    9. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2012. "Seeing REDD: A Microeconomic Analysis of Carbon Sequestration in Indonesia," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126688, International Association of Agricultural Economists.
    10. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    11. Zhang, Qi & Bilsborrow, Richard E. & Song, Conghe & Tao, Shiqi & Huang, Qingfeng, 2019. "Rural household income distribution and inequality in China: Effects of payments for ecosystem services policies and other factors," Ecological Economics, Elsevier, vol. 160(C), pages 114-127.
    12. Zhang, Jing & Brown, Colin & Qiao, Guanghua & Zhang, Bao, 2019. "Effect of Eco-compensation Schemes on Household Income Structures and Herder Satisfaction: Lessons From the Grassland Ecosystem Subsidy and Award Scheme in Inner Mongolia," Ecological Economics, Elsevier, vol. 159(C), pages 46-53.
    13. Martin Persson, U. & Alpízar, Francisco, 2013. "Conditional Cash Transfers and Payments for Environmental Services—A Conceptual Framework for Explaining and Judging Differences in Outcomes," World Development, Elsevier, vol. 43(C), pages 124-137.
    14. Ina, Porras & Bruce, Alyward & Jeff, Dengel, 2013. "Monitoring payments for watershed services schemes in developing countries," MPRA Paper 47185, University Library of Munich, Germany.
    15. Shyamsundar, Priya & Ahlroth, Sofia & Kristjanson, Patricia & Onder, Stefanie, 2020. "Supporting pathways to prosperity in forest landscapes – A PRIME framework," World Development, Elsevier, vol. 125(C).
    16. Rosendal, G. Kristin & Andresen, Steinar, 2011. "Institutional design for improved forest governance through REDD: Lessons from the global environment facility," Ecological Economics, Elsevier, vol. 70(11), pages 1908-1915, September.
    17. Hahn, Thomas & McDermott, Constance & Ituarte-Lima, Claudia & Schultz, Maria & Green, Tom & Tuvendal, Magnus, 2015. "Purposes and degrees of commodification: Economic instruments for biodiversity and ecosystem services need not rely on markets or monetary valuation," Ecosystem Services, Elsevier, vol. 16(C), pages 74-82.
    18. Vaissière, Anne-Charlotte & Quétier, Fabien & Calvet, Coralie & Levrel, Harold & Wunder, Sven, 2020. "Biodiversity offsets and payments for environmental services: Clarifying the family ties," Ecological Economics, Elsevier, vol. 169(C).
    19. Börner, Jan & Wunder, Sven & Wertz-Kanounnikoff, Sheila & Tito, Marcos Rügnitz & Pereira, Ligia & Nascimento, Nathalia, 2010. "Direct conservation payments in the Brazilian Amazon: Scope and equity implications," Ecological Economics, Elsevier, vol. 69(6), pages 1272-1282, April.
    20. Whitten, Stuart M., 2017. "Designing and implementing conservation tender metrics: Twelve core considerations," Land Use Policy, Elsevier, vol. 63(C), pages 561-571.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:19:y:2014:i:6:p:757-772. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.