IDEAS home Printed from https://ideas.repec.org/a/spr/jtrsec/v14y2021i3d10.1007_s12198-021-00237-3.html
   My bibliography  Save this article

Optimising multi-layered security screening

Author

Listed:
  • David Anderson

    (European Commission)

Abstract

Screening for prohibited items at airports is an example of a multi-layered screening process. Multiple layers of screening – often comprising different technologies with complementary strengths and weaknesses – are combined to create a single screening process. The detection performance of the overall system depends on multiple factors, including the performance of individual layers, the complementarity of different layers, and the decision rule(s) for determining how outputs from individual layers are combined. The aim of this work is to understand and optimise the overall system performance of a multi-layered screening process. Novel aspects include the use of realistic profiles of alarm distributions based on experimental observations and a focus on the influence of correlation/orthogonality amongst the layers of screening. The results show that a cumulative screening architecture can outperform a cascading one, yielding a significant increase in system-level true positive rate for only a modest increase in false positive rate. A cumulative screening process is also more resilient to weaknesses in the individual layers. The performance of a multi-layered screening process using a cascading approach is maximised when the false positives are orthogonal across the different layers and the true positives are correlated. The system-level performance of a cumulative screening process, on the other hand, is maximised when both false positives and true positives are as orthogonal as possible. The cost of ignoring orthogonality between screening layers is explored with some numerical examples. The underlying software model is provided in a Jupyter Notebook as supplementary material.

Suggested Citation

  • David Anderson, 2021. "Optimising multi-layered security screening," Journal of Transportation Security, Springer, vol. 14(3), pages 249-273, December.
  • Handle: RePEc:spr:jtrsec:v:14:y:2021:i:3:d:10.1007_s12198-021-00237-3
    DOI: 10.1007/s12198-021-00237-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12198-021-00237-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12198-021-00237-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan E. Martonosi & Arnold Barnett, 2006. "How Effective Is Security Screening of Airline Passengers?," Interfaces, INFORMS, vol. 36(6), pages 545-552, December.
    2. Nie, Xiaofeng & Batta, Rajan & Drury, Colin G. & Lin, Li, 2009. "Passenger grouping with risk levels in an airport security system," European Journal of Operational Research, Elsevier, vol. 194(2), pages 574-584, April.
    3. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    4. John E. Kobza & Sheldon H. Jacobson, 1996. "Addressing the Dependency Problem in Access Security System Architecture Design," Risk Analysis, John Wiley & Sons, vol. 16(6), pages 801-812, December.
    5. Mark G. Stewart & John Mueller, 2018. "Risk and economic assessment of U.S. aviation security for passenger-borne bomb attacks," Journal of Transportation Security, Springer, vol. 11(3), pages 117-136, December.
    6. Lazar Babu, Vellara L. & Batta, Rajan & Lin, Li, 2006. "Passenger grouping under constant threat probability in an airport security system," European Journal of Operational Research, Elsevier, vol. 168(2), pages 633-644, January.
    7. Nie, Xiaofeng, 2011. "Risk-based grouping for checked baggage screening systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1499-1506.
    8. Mark G. Stewart & John Mueller, 2013. "Terrorism Risks and Cost‐Benefit Analysis of Aviation Security," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 893-908, May.
    9. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    10. Elitsa Dzhongova & David Anderson & Jaap Ruiter & Velibor Novakovic & Miguel Ruiz Oses, 2017. "False alarm rates of liquid explosives detection systems," Journal of Transportation Security, Springer, vol. 10(3), pages 145-169, December.
    11. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Aniruddha Bagchi & Jomon Aliyas Paul, 2014. "Optimal Allocation of Resources in Airport Security: Profiling vs. Screening," Operations Research, INFORMS, vol. 62(2), pages 219-233, April.
    3. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    4. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    5. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    6. Pourakbar, M. & Zuidwijk, R.A., 2018. "The role of customs in securing containerized global supply chains," European Journal of Operational Research, Elsevier, vol. 271(1), pages 331-340.
    7. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    8. Hoogstrate, André J. & Klaassen, Chris A.J., 2015. "Information weighted sampling for detecting rare items in finite populations with a focus on security," European Journal of Operational Research, Elsevier, vol. 241(3), pages 880-887.
    9. Alexander G. Nikolaev & Sheldon H. Jacobson & Laura A. McLay, 2007. "A Sequential Stochastic Security System Design Problem for Aviation Security," Transportation Science, INFORMS, vol. 41(2), pages 182-194, May.
    10. Xiaofeng Nie & Rajan Batta & Colin G. Drury & Li Lin, 2009. "The Impact of Joint Responses of Devices in an Airport Security System," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 298-311, February.
    11. Yan, Xihong & Nie, Xiaofeng, 2016. "Optimal placement of multiple types of detectors under a small vessel attack threat to port security," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 71-94.
    12. Kalakou, Sofia & Psaraki-Kalouptsidi, Voula & Moura, Filipe, 2015. "Future airport terminals: New technologies promise capacity gains," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 203-212.
    13. Justin Yates & Sujeevraja Sanjeevi, 2012. "Assessing the impact of vulnerability modeling in the protection of critical infrastructure," Journal of Geographical Systems, Springer, vol. 14(4), pages 415-435, October.
    14. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    15. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    16. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    17. Cen Song & Jun Zhuang, 2017. "Two-stage security screening strategies in the face of strategic applicants, congestions and screening errors," Annals of Operations Research, Springer, vol. 258(2), pages 237-262, November.
    18. Skorupski, Jacek & Uchroński, Piotr, 2020. "Multi-criteria group decision-making approach to the modernization of hold baggage security screening system at an airport," Journal of Air Transport Management, Elsevier, vol. 87(C).
    19. Wu, Paul Pao-Yen & Mengersen, Kerrie, 2013. "A review of models and model usage scenarios for an airport complex system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 124-140.
    20. Ajay Sudharshan Satish & Akul Mangal & Prathamesh Churi, 2023. "A systematic review of passenger profiling in airport security system: Taking a potential case study of CAPPS II," Journal of Transportation Security, Springer, vol. 16(1), pages 1-41, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jtrsec:v:14:y:2021:i:3:d:10.1007_s12198-021-00237-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.