IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i11p1499-1506.html
   My bibliography  Save this article

Risk-based grouping for checked baggage screening systems

Author

Listed:
  • Nie, Xiaofeng

Abstract

With millions of bags checked at over 7000 baggage screening locations in US daily, the checked baggage screening system may be exploited by the terrorists to do harm to the homeland security. Due to such a huge amount of luggage, how to improve the effectiveness and efficiency of the screening system becomes a challenging task. In this paper, we propose a risk-based cost-effectiveness model where checked bags are classified into several risk classes according to their risk characteristics. According to their risk levels, bags from different classes may go through different device combinations sequentially. For a multiple-device screening system, we determine the optimal sequence of the screening devices and the separate grouping strategies for bags from different risk classes with the objective of minimizing the expected cost per bag. Based on a detailed numerical study, we compare our model with three other cost-effectiveness models (the first model assumes that there is only one risk class, the second model assumes that there is only one group for each risk class, and the third model assumes that all devices in a device combination need to be gone through). Our major conclusions are that our proposed model is beneficial compared with other three models and moreover, the relative benefit becomes larger when the authority commands a stricter upper bound for the probability of false clear.

Suggested Citation

  • Nie, Xiaofeng, 2011. "Risk-based grouping for checked baggage screening systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1499-1506.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:11:p:1499-1506
    DOI: 10.1016/j.ress.2011.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201100130X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nie, Xiaofeng & Batta, Rajan & Drury, Colin G. & Lin, Li, 2009. "Passenger grouping with risk levels in an airport security system," European Journal of Operational Research, Elsevier, vol. 194(2), pages 574-584, April.
    2. Feng, Qianmei & Sahin, Hande & Kapur, Kailash C., 2009. "Designing airport checked-baggage-screening strategies considering system capability and reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 618-627.
    3. Leone, Kelly & (Rachel) Liu, Rongfang, 2005. "The key design parameters of checked baggage security screening systems in airports," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 69-78.
    4. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    2. Kalakou, Sofia & Psaraki-Kalouptsidi, Voula & Moura, Filipe, 2015. "Future airport terminals: New technologies promise capacity gains," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 203-212.
    3. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    4. Skorupski, Jacek & Uchroński, Piotr, 2018. "Evaluation of the effectiveness of an airport passenger and baggage security screening system," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 53-64.
    5. Aniruddha Bagchi & Jomon Aliyas Paul, 2014. "Optimal Allocation of Resources in Airport Security: Profiling vs. Screening," Operations Research, INFORMS, vol. 62(2), pages 219-233, April.
    6. Skorupski, Jacek & Uchroński, Piotr, 2020. "Multi-criteria group decision-making approach to the modernization of hold baggage security screening system at an airport," Journal of Air Transport Management, Elsevier, vol. 87(C).
    7. David Anderson, 2021. "Optimising multi-layered security screening," Journal of Transportation Security, Springer, vol. 14(3), pages 249-273, December.
    8. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Yan, Xihong & Nie, Xiaofeng, 2016. "Optimal placement of multiple types of detectors under a small vessel attack threat to port security," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 71-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skorupski, Jacek & Uchroński, Piotr, 2020. "Multi-criteria group decision-making approach to the modernization of hold baggage security screening system at an airport," Journal of Air Transport Management, Elsevier, vol. 87(C).
    2. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    3. Pourakbar, M. & Zuidwijk, R.A., 2018. "The role of customs in securing containerized global supply chains," European Journal of Operational Research, Elsevier, vol. 271(1), pages 331-340.
    4. Aniruddha Bagchi & Jomon Aliyas Paul, 2014. "Optimal Allocation of Resources in Airport Security: Profiling vs. Screening," Operations Research, INFORMS, vol. 62(2), pages 219-233, April.
    5. Yan, Xihong & Nie, Xiaofeng, 2016. "Optimal placement of multiple types of detectors under a small vessel attack threat to port security," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 71-94.
    6. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2021. "Technology adoption for airport security: Modeling public disclosure and secrecy in an attacker-defender game," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    9. Lee, Adrian J. & Jacobson, Sheldon H., 2011. "The impact of aviation checkpoint queues on optimizing security screening effectiveness," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 900-911.
    10. Adrian J. Lee & Sheldon H. Jacobson, 2012. "Addressing Passenger Risk Uncertainty for Aviation Security Screening," Transportation Science, INFORMS, vol. 46(2), pages 189-203, May.
    11. Skorupski, Jacek & Uchroński, Piotr, 2018. "Evaluation of the effectiveness of an airport passenger and baggage security screening system," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 53-64.
    12. Zhonghua Wei & Sinan Chu & Zhengde Huang & Shi Qiu & Qixuan Zhao, 2020. "Optimization Design of X-ray Conveyer Belt Length for Subway Security Check Systems in Beijing, China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    13. David Anderson, 2021. "Optimising multi-layered security screening," Journal of Transportation Security, Springer, vol. 14(3), pages 249-273, December.
    14. Baycik, N. Orkun & Sharkey, Thomas C. & Rainwater, Chase E., 2020. "A Markov Decision Process approach for balancing intelligence and interdiction operations in city-level drug trafficking enforcement," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    15. Justin Yates & Sujeevraja Sanjeevi, 2012. "Assessing the impact of vulnerability modeling in the protection of critical infrastructure," Journal of Geographical Systems, Springer, vol. 14(4), pages 415-435, October.
    16. Olapiriyakul, Sun & Das, Sanchoy, 2007. "Design and analysis of a two-stage security screening and inspection system," Journal of Air Transport Management, Elsevier, vol. 13(2), pages 67-74.
    17. Svetlana N Yanushkevich & Shawn C Eastwood & Martin Drahansky & Vlad P Shmerko, 2018. "Understanding and taxonomy of uncertainty in modeling, simulation, and risk profiling for border control automation," The Journal of Defense Modeling and Simulation, , vol. 15(1), pages 95-109, January.
    18. Guo, Shu & Choi, Tsan-Ming & Chung, Sai-Ho, 2022. "Self-design fun: Should 3D printing be employed in mass customization operations?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 883-897.
    19. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    20. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:11:p:1499-1506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.