IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v46y2012i2p189-203.html
   My bibliography  Save this article

Addressing Passenger Risk Uncertainty for Aviation Security Screening

Author

Listed:
  • Adrian J. Lee

    (Central Illinois Technology and Education Research Institute, Springfield, Illinois 62704)

  • Sheldon H. Jacobson

    (Department of Computer Science, University of Illinois at Urbana--Champaign, Urbana, Illinois 61801)

Abstract

Within the aviation security system, the preeminent objective of passenger and baggage screening is to prevent prohibited items from entering the airport terminal and getting put onboard a commercial aircraft. Because of limited budget and personnel resources, as well as constraints on the screening device capacities, only a fraction of the passengers may be screened at the highest security levels. Sequential passenger assignment policies have been formulated through dynamic programming and nonlinear control. However, both of these approaches rely on a known distribution of passenger risk. This paper presents estimation algorithms that address various levels of uncertainty in the passenger risk distribution, which can be applied to existing passenger assignment policies. Simulation results are reported to illustrate the sensitivity to variations in the unknown distribution parameter and to demonstrate that the prudent practice of overestimating the overall population risk level produces a larger number of improperly screened passengers and a lower level of security in comparison to underestimating passenger risk. The key contribution of this work is the finding that integrating online estimation of passenger risk into security screening assignment decisions increases the overall expected security and decreases the sensitivity to variations in the overall population risk level.

Suggested Citation

  • Adrian J. Lee & Sheldon H. Jacobson, 2012. "Addressing Passenger Risk Uncertainty for Aviation Security Screening," Transportation Science, INFORMS, vol. 46(2), pages 189-203, May.
  • Handle: RePEc:inm:ortrsc:v:46:y:2012:i:2:p:189-203
    DOI: 10.1287/trsc.1110.0384
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1110.0384
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1110.0384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lazar Babu, Vellara L. & Batta, Rajan & Lin, Li, 2006. "Passenger grouping under constant threat probability in an airport security system," European Journal of Operational Research, Elsevier, vol. 168(2), pages 633-644, January.
    2. D.D. Yao & S. Zheng, 1999. "Sequential quality control in batch manufacturing," Annals of Operations Research, Springer, vol. 87(0), pages 3-30, April.
    3. Nie, Xiaofeng & Batta, Rajan & Drury, Colin G. & Lin, Li, 2009. "Passenger grouping with risk levels in an airport security system," European Journal of Operational Research, Elsevier, vol. 194(2), pages 574-584, April.
    4. Adrian Lee & Sheldon Jacobson, 2011. "Sequential stochastic assignment under uncertainty: estimation and convergence," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 21-46, February.
    5. Alexander G. Nikolaev & Sheldon H. Jacobson & Laura A. McLay, 2007. "A Sequential Stochastic Security System Design Problem for Aviation Security," Transportation Science, INFORMS, vol. 41(2), pages 182-194, May.
    6. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Xihong & Nie, Xiaofeng, 2016. "Optimal placement of multiple types of detectors under a small vessel attack threat to port security," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 71-94.
    2. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    3. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    2. Aniruddha Bagchi & Jomon Aliyas Paul, 2014. "Optimal Allocation of Resources in Airport Security: Profiling vs. Screening," Operations Research, INFORMS, vol. 62(2), pages 219-233, April.
    3. Pourakbar, M. & Zuidwijk, R.A., 2018. "The role of customs in securing containerized global supply chains," European Journal of Operational Research, Elsevier, vol. 271(1), pages 331-340.
    4. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Lee, Adrian J. & Jacobson, Sheldon H., 2011. "The impact of aviation checkpoint queues on optimizing security screening effectiveness," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 900-911.
    6. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    7. David Anderson, 2021. "Optimising multi-layered security screening," Journal of Transportation Security, Springer, vol. 14(3), pages 249-273, December.
    8. Huseyin Cavusoglu & Young Kwark & Bin Mai & Srinivasan Raghunathan, 2013. "Passenger Profiling and Screening for Aviation Security in the Presence of Strategic Attackers," Decision Analysis, INFORMS, vol. 10(1), pages 63-81, March.
    9. Song, Cen & Zhuang, Jun, 2017. "N-stage security screening strategies in the face of strategic applicants," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 292-301.
    10. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    11. Wu, Paul Pao-Yen & Mengersen, Kerrie, 2013. "A review of models and model usage scenarios for an airport complex system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 124-140.
    12. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    13. Ajay Sudharshan Satish & Akul Mangal & Prathamesh Churi, 2023. "A systematic review of passenger profiling in airport security system: Taking a potential case study of CAPPS II," Journal of Transportation Security, Springer, vol. 16(1), pages 1-41, December.
    14. Tamasi, Galileo & Demichela, Micaela, 2011. "Risk assessment techniques for civil aviation security," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 892-899.
    15. Nie, Xiaofeng, 2011. "Risk-based grouping for checked baggage screening systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1499-1506.
    16. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    17. Hoogstrate, André J. & Klaassen, Chris A.J., 2015. "Information weighted sampling for detecting rare items in finite populations with a focus on security," European Journal of Operational Research, Elsevier, vol. 241(3), pages 880-887.
    18. Zhe George Zhang & Hsing Paul Luh & Chia-Hung Wang, 2011. "Modeling Security-Check Queues," Management Science, INFORMS, vol. 57(11), pages 1979-1995, November.
    19. Xiaofeng Nie & Rajan Batta & Colin G. Drury & Li Lin, 2009. "The Impact of Joint Responses of Devices in an Airport Security System," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 298-311, February.
    20. Yan, Xihong & Nie, Xiaofeng, 2016. "Optimal placement of multiple types of detectors under a small vessel attack threat to port security," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 71-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:46:y:2012:i:2:p:189-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.