IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v194y2009i2p574-584.html
   My bibliography  Save this article

Passenger grouping with risk levels in an airport security system

Author

Listed:
  • Nie, Xiaofeng
  • Batta, Rajan
  • Drury, Colin G.
  • Lin, Li

Abstract

This is a follow-up to the recent paper by Lazar Babu et al. [V.L. Lazar Babu, R. Batta, L. Lin, Passenger grouping under constant threat probability in an airport security system, European Journal of Operational Research 168 (2006) 633-644] which investigated the benefit of classifying passengers into different groups, with the idea that the number of checks and the degree of inspection may vary for different groups. A basic assumption in that paper was that the threat probability is constant across all passengers. In this paper, we relax this assumption and consider the case where passenger risk levels are incorporated. We assume that passengers are classified into several risk classes via some passenger prescreening system, for example, Computer-Assisted Passenger Prescreening System II (CAPPS II). We consider the separate grouping of every class of passengers such that the overall false alarm probability is minimized while maintaining the overall false clear probability within specifications set by a security authority. Meanwhile, we consider the staffing needs at each check station. The problem is formulated as a mixed integer linear program. An illustrative example of the model is presented with comparisons to the model in Lazar Babu et al. (2006) using two performance measures: probability of false alarm and total number of screeners needed. Our conclusion is that incorporation of risk levels through passenger grouping strategies leads to a more efficient security check system.

Suggested Citation

  • Nie, Xiaofeng & Batta, Rajan & Drury, Colin G. & Lin, Li, 2009. "Passenger grouping with risk levels in an airport security system," European Journal of Operational Research, Elsevier, vol. 194(2), pages 574-584, April.
  • Handle: RePEc:eee:ejores:v:194:y:2009:i:2:p:574-584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01218-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan E. Martonosi & Arnold Barnett, 2006. "How Effective Is Security Screening of Airline Passengers?," Interfaces, INFORMS, vol. 36(6), pages 545-552, December.
    2. Arnold Barnett, 2004. "CAPPS II: The Foundation of Aviation Security?," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 909-916, August.
    3. Lazar Babu, Vellara L. & Batta, Rajan & Lin, Li, 2006. "Passenger grouping under constant threat probability in an airport security system," European Journal of Operational Research, Elsevier, vol. 168(2), pages 633-644, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander G. Nikolaev & Sheldon H. Jacobson & Laura A. McLay, 2007. "A Sequential Stochastic Security System Design Problem for Aviation Security," Transportation Science, INFORMS, vol. 41(2), pages 182-194, May.
    2. Xiaofeng Nie & Rajan Batta & Colin G. Drury & Li Lin, 2009. "The Impact of Joint Responses of Devices in an Airport Security System," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 298-311, February.
    3. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    4. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    5. David Anderson, 2021. "Optimising multi-layered security screening," Journal of Transportation Security, Springer, vol. 14(3), pages 249-273, December.
    6. Huseyin Cavusoglu & Byungwan Koh & Srinivasan Raghunathan, 2010. "An Analysis of the Impact of Passenger Profiling for Transportation Security," Operations Research, INFORMS, vol. 58(5), pages 1287-1302, October.
    7. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Ajay Sudharshan Satish & Akul Mangal & Prathamesh Churi, 2023. "A systematic review of passenger profiling in airport security system: Taking a potential case study of CAPPS II," Journal of Transportation Security, Springer, vol. 16(1), pages 1-41, December.
    9. Stewart, Mark G., 2010. "Risk-informed decision support for assessing the costs and benefits of counter-terrorism protective measures for infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(1), pages 29-40.
    10. Gkritza, Konstantina & Niemeier, Debbie & Mannering, Fred, 2006. "Airport security screening and changing passenger satisfaction: An exploratory assessment," Journal of Air Transport Management, Elsevier, vol. 12(5), pages 213-219.
    11. Song, Cen & Zhuang, Jun, 2017. "N-stage security screening strategies in the face of strategic applicants," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 292-301.
    12. Sakano, R. & Obeng, K. & Fuller, K., 2016. "Airport security and screening satisfaction: A case study of U.S," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 129-138.
    13. Mark G. Stewart & John Mueller, 2013. "Terrorism Risks and Cost‐Benefit Analysis of Aviation Security," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 893-908, May.
    14. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    15. Hoogstrate, André J. & Klaassen, Chris A.J., 2015. "Information weighted sampling for detecting rare items in finite populations with a focus on security," European Journal of Operational Research, Elsevier, vol. 241(3), pages 880-887.
    16. Susan E. Martonosi & Arnold Barnett, 2006. "How Effective Is Security Screening of Airline Passengers?," Interfaces, INFORMS, vol. 36(6), pages 545-552, December.
    17. Zhe George Zhang & Hsing Paul Luh & Chia-Hung Wang, 2011. "Modeling Security-Check Queues," Management Science, INFORMS, vol. 57(11), pages 1979-1995, November.
    18. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    19. Mark G. Stewart & John Mueller, 2018. "Risk and economic assessment of U.S. aviation security for passenger-borne bomb attacks," Journal of Transportation Security, Springer, vol. 11(3), pages 117-136, December.
    20. Manish Jain & Jason Tsai & James Pita & Christopher Kiekintveld & Shyamsunder Rathi & Milind Tambe & Fernando Ordóñez, 2010. "Software Assistants for Randomized Patrol Planning for the LAX Airport Police and the Federal Air Marshal Service," Interfaces, INFORMS, vol. 40(4), pages 267-290, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:194:y:2009:i:2:p:574-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.