IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02358-7.html
   My bibliography  Save this article

Quantile regression-enriched event modeling framework for dropout analysis in high-temperature superconductor manufacturing

Author

Listed:
  • Mai Li

    (University of Houston)

  • Ying Lin

    (University of Houston
    University of Houston)

  • Qianmei Feng

    (University of Houston
    University of Houston)

  • Wenjiang Fu

    (University of Houston
    University of Houston)

  • Shenglin Peng

    (University of Houston)

  • Siwei Chen

    (Princeton Plasma Physics Laboratory)

  • Mahesh Paidpilli

    (University of Houston
    University of Houston
    University of Houston)

  • Chirag Goel

    (University of Houston
    University of Houston
    University of Houston)

  • Eduard Galstyan

    (University of Houston
    University of Houston
    University of Houston)

  • Venkat Selvamanickam

    (University of Houston
    University of Houston
    University of Houston)

Abstract

High-temperature superconductor (HTS) tapes have shown promising characteristics of high critical current, which are prerequisites for applications in high-field magnets. Due to the unstable growth conditions in the HTS manufacturing process, however, the frequent occurrences of dropouts in the critical current impede the consistent performance of HTS tapes. To manufacture HTS tapes with large scale, high yield, and uniform performance, it is essential to develop novel data analysis approaches for modeling the dropouts and identifying the related important process parameters. Conventional methods for modeling recurrent events, such as the point process, require the extraction of events from quality measurements. As the critical current is a continuous process, it may not comprehensively represent the drop patterns by transforming the time-series measurements into a set of events. To solve this issue, we develop a novel quantile regression-enriched event modeling (QREM) framework that integrates the non-homogeneous Poisson process for modeling the occurrence of dropouts and the quantile regression for capturing the drop patterns. By incorporating the feature selection and regularization, the proposed framework identifies a set of significant process parameters that can potentially cause the dropouts of HTS tapes. The proposed method is tested on real HTS tapes produced using an advanced manufacturing process, successfully identifying important parameters that influence dropout events including the substrate temperature and voltage. The results demonstrate that the proposed QREM method outperforms the standard point process in predicting the occurrence of dropouts.

Suggested Citation

  • Mai Li & Ying Lin & Qianmei Feng & Wenjiang Fu & Shenglin Peng & Siwei Chen & Mahesh Paidpilli & Chirag Goel & Eduard Galstyan & Venkat Selvamanickam, 2025. "Quantile regression-enriched event modeling framework for dropout analysis in high-temperature superconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3009-3030, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02358-7
    DOI: 10.1007/s10845-024-02358-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02358-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02358-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nielsen, J.D. & Dean, C.B., 2008. "Adaptive functional mixed NHPP models for the analysis of recurrent event panel data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3670-3685, March.
    2. Zhou Zhou & Xiaofeng Shao, 2013. "Inference for linear models with dependent errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 323-343, March.
    3. A. Veevers, 1986. "Repairable Systems Reliability: Modeling, Inference, Misconceptions and Their Causes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 35(1), pages 76-76, March.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Peng, Xiaosheng & Wang, Hongyu & Lang, Jianxun & Li, Wenze & Xu, Qiyou & Zhang, Zuowei & Cai, Tao & Duan, Shanxu & Liu, Fangjie & Li, Chaoshun, 2021. "EALSTM-QR: Interval wind-power prediction model based on numerical weather prediction and deep learning," Energy, Elsevier, vol. 220(C).
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    2. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    3. Fernando Eguren-Martin & Andrej Sokol, 2022. "Attention to the Tail(s): Global Financial Conditions and Exchange Rate Risks," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(3), pages 487-519, September.
    4. Fernando Eguren-Martin & Cian O'Neill & Andrej Sokol & Lukas von dem Berge, 2020. "Capital flows-at-risk: push, pull and the role of policy," Bank of England working papers 881, Bank of England.
    5. Alireza Daneshvar & Golalizadeh Mousa, 2023. "Regression shrinkage and selection via least quantile shrinkage and selection operator," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-17, February.
    6. Yıldırım, Durmuş Çağrı & Yıldırım, Seda & Turan, Tuğba & Gattone, Tulia & Magazzino, Cosimo, 2025. "Balancing green power: Hydropower and biomass energy's impact on environment in OECD countries‬‬‬‬‬‬‬‬," Renewable Energy, Elsevier, vol. 241(C).
    7. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    8. Matthew Pietrosanu & Jueyu Gao & Linglong Kong & Bei Jiang & Di Niu, 2021. "Advanced algorithms for penalized quantile and composite quantile regression," Computational Statistics, Springer, vol. 36(1), pages 333-346, March.
    9. Eguren-Martin, Fernando & O'Neill, Cian & Sokol, Andrej & von dem Berge, Lukas, 2024. "Capital flows-at-risk: Push, pull and the role of policy," Journal of International Money and Finance, Elsevier, vol. 147(C).
    10. Lai, Yuanhao & McLeod, Ian, 2020. "Ensemble quantile classifier," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
    12. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    13. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    14. Molyneux, Philip & Pancotto, Livia & Reghezza, Alessio & Rodriguez d'Acri, Costanza, 2022. "Interest rate risk and monetary policy normalisation in the euro area," Journal of International Money and Finance, Elsevier, vol. 124(C).
    15. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    16. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    17. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    18. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    19. Viet Hoang Dinh & Didier Nibbering & Benjamin Wong, 2023. "Random Subspace Local Projections," CAMA Working Papers 2023-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02358-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.