IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3670-3685.html
   My bibliography  Save this article

Adaptive functional mixed NHPP models for the analysis of recurrent event panel data

Author

Listed:
  • Nielsen, J.D.
  • Dean, C.B.

Abstract

An adaptive semi-parametric model for analyzing longitudinal panel count data is presented. Panel data refers here to data collected as the number of events occurring between specific followup times over a period or disjoint periods of observation of a subject. The counts are assumed to arise from a mixed nonhomogeneous Poisson process where frailties account for heterogeneity common to this type of data. The generating intensity of the counting process is assumed to be a smooth function modeled with penalized splines. A main feature is that the penalization used to control the amount of smoothing, usually assumed to be time homogeneous, is allowed to be time dependent so that the spline can more easily adapt to sharp changes in curvature regimes. Splines are also used to model time dependent covariate effects. Penalized quasi-likelihood (PQL;Â [Breslow, N.E., Clayton, D.G., 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88, 9-25]) is used to derive estimating equations for this adaptive spline model so that only low moment assumptions are required for inference. Both jackknife and bootstrap variance estimators are developed. The finite sample properties of the proposed estimating functions are investigated empirically by simulation. Comparisons with a model assuming a time homogeneous penalty are made. The methods are used in an analysis of data from an experiment to test the effectiveness of pheromones in disrupting the mating pattern of the cherry bark tortrix moth. Recommendations are provided on when the simpler model with a time homogeneous penalty may provide a fair approximation to data and where such an approach will be lacking, calling for the more complicated adaptive methods.

Suggested Citation

  • Nielsen, J.D. & Dean, C.B., 2008. "Adaptive functional mixed NHPP models for the analysis of recurrent event panel data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3670-3685, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3670-3685
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00457-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    2. Alexandre Pintore & Paul Speckman & Chris C. Holmes, 2006. "Spatially adaptive smoothing splines," Biometrika, Biometrika Trust, vol. 93(1), pages 113-125, March.
    3. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    4. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    5. Wenxin Mao & Linda H. Zhao, 2003. "Free‐knot polynomial splines with confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 901-919, November.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    7. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    8. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Qin & Zhangsheng Yu, 2021. "Penalized spline estimation for panel count data model with time-varying coefficients," Computational Statistics, Springer, vol. 36(4), pages 2413-2434, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. D. Nielsen & C. B. Dean, 2008. "Clustered Mixed Nonhomogeneous Poisson Process Spline Models for the Analysis of Recurrent Event Panel Data," Biometrics, The International Biometric Society, vol. 64(3), pages 751-761, September.
    2. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    3. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    4. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    5. Hannes Matuschek & Reinhold Kliegl & Matthias Holschneider, 2015. "Smoothing Spline ANOVA Decomposition of Arbitrary Splines: An Application to Eye Movements in Reading," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    6. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    7. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    8. Jinsong Chen & Inyoung Kim & George R. Terrell & Lei Liu, 2014. "Generalised partial linear single-index mixed models for repeated measures data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 291-303, June.
    9. Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
    10. Nikolaus Umlauf & Georg Mayr & Jakob Messner & Achim Zeileis, 2011. "Why Does It Always Rain on Me? A Spatio-Temporal Analysis of Precipitation in Austria," Working Papers 2011-25, Faculty of Economics and Statistics, Universität Innsbruck.
    11. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    12. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    13. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    15. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503, April.
    16. Göran Kauermann & Timo Teuber & Peter Flaschel, 2012. "Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 409-427, April.
    17. Adhya Sumanta & Banerjee, Tathagata & Chattopadhyay, G., 2007. "Inference on Categorical Survey Response: A Predictive Approach," IIMA Working Papers WP2007-05-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    18. Binder, Harald & Sauerbrei, Willi, 2008. "Increasing the usefulness of additive spline models by knot removal," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5305-5318, August.
    19. Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.
    20. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3670-3685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.