IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v54y2025i1d10.1007_s00182-025-00929-3.html
   My bibliography  Save this article

On the discrete-time origins of the replicator dynamics: from convergence to instability and chaos

Author

Listed:
  • Fryderyk Falniowski

    (Krakow University of Economics)

  • Panayotis Mertikopoulos

    (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG)

Abstract

We consider three distinct discrete-time models of learning and evolution in games: a biological model based on intra-species selective pressure, the dynamics induced by pairwise proportional imitation, and the exponential/multiplicative weights algorithm for online learning. Even though these models share the same continuous-time limit—the replicator dynamics—we show that second-order effects play a crucial role and may lead to drastically different behaviors in each model, even in very simple, symmetric $$2\times 2$$ 2 × 2 games. Specifically, we study the resulting discrete-time dynamics in a class of parametrized congestion games, and we show that (i) in the biological model of intra-species competition, the dynamics remain convergent for any parameter value; (ii) the dynamics of pairwise proportional imitation exhibit an entire range of behaviors for larger time steps and different equilibrium configurations (stability, instability, and even Li–Yorke chaos); while (iii) in the exponential/multiplicative weights algorithm, increasing the time step (almost) inevitably leads to chaos (again, in the formal, Li–Yorke sense). This divergence of behaviors comes in stark contrast to the globally convergent behavior of the replicator dynamics, and serves to delineate the extent to which the replicator dynamics provide a useful predictor for the long-run behavior of their discrete-time origins.

Suggested Citation

  • Fryderyk Falniowski & Panayotis Mertikopoulos, 2025. "On the discrete-time origins of the replicator dynamics: from convergence to instability and chaos," International Journal of Game Theory, Springer;Game Theory Society, vol. 54(1), pages 1-29, June.
  • Handle: RePEc:spr:jogath:v:54:y:2025:i:1:d:10.1007_s00182-025-00929-3
    DOI: 10.1007/s00182-025-00929-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-025-00929-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-025-00929-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeed Hadikhanloo & Rida Laraki & Panayotis Mertikopoulos & Sylvain Sorin, 2022. "Learning in nonatomic games, part Ⅰ: Finite action spaces and population games," Post-Print hal-03767995, HAL.
    2. Sandholm, William H. & DokumacI, Emin & Lahkar, Ratul, 2008. "The projection dynamic and the replicator dynamic," Games and Economic Behavior, Elsevier, vol. 64(2), pages 666-683, November.
    3. van Strien, Sebastian & Sparrow, Colin, 2011. "Fictitious play in 3x3 games: Chaos and dithering behaviour," Games and Economic Behavior, Elsevier, vol. 73(1), pages 262-286, September.
    4. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    5. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    6. Binmore, Ken & Samuelson, Larry, 1997. "Muddling Through: Noisy Equilibrium Selection," Journal of Economic Theory, Elsevier, vol. 74(2), pages 235-265, June.
    7. Sparrow, Colin & van Strien, Sebastian & Harris, Christopher, 2008. "Fictitious play in 3x3 games: The transition between periodic and chaotic behaviour," Games and Economic Behavior, Elsevier, vol. 63(1), pages 259-291, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Jakub Bielawski & {L}ukasz Cholewa & Fryderyk Falniowski, 2024. "The emergence of chaos in population game dynamics induced by comparisons," Papers 2412.06037, arXiv.org, revised Apr 2025.
    3. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    4. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    5. Sandholm, William H., 2007. "Evolution in Bayesian games II: Stability of purified equilibria," Journal of Economic Theory, Elsevier, vol. 136(1), pages 641-667, September.
    6. William H. Sandholm & Mathias Staudigl, 2018. "Sample Path Large Deviations for Stochastic Evolutionary Game Dynamics," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1348-1377, November.
    7. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    8. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Sandholm, William H., 2019. "An introduction to ABED: Agent-based simulation of evolutionary game dynamics," Games and Economic Behavior, Elsevier, vol. 118(C), pages 434-462.
    9. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    10. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    11. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    12. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    13. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    14. Lahkar, Ratul & Mukherjee, Sayan & Roy, Souvik, 2022. "Generalized perturbed best response dynamics with a continuum of strategies," Journal of Economic Theory, Elsevier, vol. 200(C).
    15. William Sandholm, 2014. "Probabilistic Interpretations of Integrability for Game Dynamics," Dynamic Games and Applications, Springer, vol. 4(1), pages 95-106, March.
    16. Sandholm, William H., 2012. "Stochastic imitative game dynamics with committed agents," Journal of Economic Theory, Elsevier, vol. 147(5), pages 2056-2071.
    17. Battalio,R. & Samuelson,L. & Huyck,J. van, 1998. "Risk dominance, payoff dominance and probabilistic choice learning," Working papers 2, Wisconsin Madison - Social Systems.
    18. Carlos Alós-Ferrer & Georg Kirchsteiger & Markus Walzl, 2010. "On the Evolution of Market Institutions: The Platform Design Paradox," Economic Journal, Royal Economic Society, vol. 120(543), pages 215-243, March.
    19. Belianin, A., 2017. "Face to Face to Human Being: Achievements and Challenges of Behavioral Economics," Journal of the New Economic Association, New Economic Association, vol. 34(2), pages 166-175.
    20. Ratul Lahkar, 2017. "Large Population Aggregative Potential Games," Dynamic Games and Applications, Springer, vol. 7(3), pages 443-467, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:54:y:2025:i:1:d:10.1007_s00182-025-00929-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.