IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v20y2010i5p741-764.html
   My bibliography  Save this article

The division of labor in innovation between general purpose technology and special purpose technology

Author

Listed:
  • Tsutomu Harada

Abstract

No abstract is available for this item.

Suggested Citation

  • Tsutomu Harada, 2010. "The division of labor in innovation between general purpose technology and special purpose technology," Journal of Evolutionary Economics, Springer, vol. 20(5), pages 741-764, October.
  • Handle: RePEc:spr:joevec:v:20:y:2010:i:5:p:741-764
    DOI: 10.1007/s00191-009-0165-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00191-009-0165-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00191-009-0165-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eriksson, Clas & Lindh, Thomas, 2000. "Growth cycles with technology shifts and externalities," Economic Modelling, Elsevier, vol. 17(1), pages 139-170, January.
    2. repec:adr:anecst:y:1998:i:49-50:p:02 is not listed on IDEAS
    3. Philippe Aghion & Peter Howitt, 1999. "On the Macroeconomic Effects of Major Technological Change," Nordic Journal of Political Economy, Nordic Journal of Political Economy, vol. 25, pages 15-32.
    4. Elhanan Helpman & Manuel Trajtenberg, 1996. "Diffusion of General Purpose Technologies," NBER Working Papers 5773, National Bureau of Economic Research, Inc.
    5. Charles I. Jones, 1995. "Time Series Tests of Endogenous Growth Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 495-525.
    6. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    7. Helpman, Elhanan & Trajtenberg, Manuel, 1994. "A Time to Sow and a Time to Reap: Growth Based on General Purpose Technologies," CEPR Discussion Papers 1080, C.E.P.R. Discussion Papers.
    8. Alwyn Young, 1998. "Growth without Scale Effects," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 41-63, February.
    9. Segerstrom, Paul S, 1998. "Endogenous Growth without Scale Effects," American Economic Review, American Economic Association, vol. 88(5), pages 1290-1310, December.
    10. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    11. Erik Brynjolfsson & Lorin Hitt, 1996. "Paradox Lost? Firm-Level Evidence on the Returns to Information Systems Spending," Management Science, INFORMS, vol. 42(4), pages 541-558, April.
    12. Dinopoulos, Elias & Thompson, Peter, 1998. "Schumpeterian Growth without Scale Effects," Journal of Economic Growth, Springer, vol. 3(4), pages 313-335, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harada, Tsutomu, 2012. "Advantages of backwardness and forwardness with shifting comparative advantage," Research in Economics, Elsevier, vol. 66(1), pages 72-81.
    2. Uwe Cantner & Simone Vannuccini, 2012. "A New View of General Purpose Technologies," Jena Economics Research Papers 2012-054, Friedrich-Schiller-University Jena.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turnovsky, S., 2000. "Growth in an Open Economy: some Recent Developments," Papers 5, Warwick - Development Economics Research Centre.
    2. Hélène Latzer & Kiminori Matsuyama & Mathieu Parenti, 2018. "The market Size Effect in Endogenous Growth Reconsidered," Documents de travail du Centre d'Economie de la Sorbonne 18032, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    4. Sener, Fuat, 2008. "R&D policies, endogenous growth and scale effects," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3895-3916, December.
    5. Stadler, Manfred, 2004. "Bildung, Innovationsdynamik und Produktivitätswachstum," Tübinger Diskussionsbeiträge 280, University of Tübingen, School of Business and Economics.
    6. Gray, Elie & Grimaud, André, 2016. "Using the Salop Circle to Study Scale Effects in Schumpeterian Growth Models: Why Inter-sectoral Knowledge Diffusion Matters," TSE Working Papers 16-676, Toulouse School of Economics (TSE).
    7. Cozzi, Guido, 2021. "Semi-Endogenous or Fully Endogenous Growth? A Simple Unified Theory," MPRA Paper 110681, University Library of Munich, Germany.
    8. Dean Scrimgeour, 2015. "Dynamic Scoring in a Romer‐Style Economy," Southern Economic Journal, John Wiley & Sons, vol. 81(3), pages 697-723, January.
    9. Kaixing Huang, 2016. "Population Growth, Human Capital Accumulation, and the Long-Run Dynamics of Economic Growth," School of Economics and Public Policy Working Papers 2016-13, University of Adelaide, School of Economics and Public Policy.
    10. Carmelo Pierpaolo Parello, 2022. "Migration and growth in a Schumpeterian growth model with creative destruction [A model of growth through creative destruction]," Oxford Economic Papers, Oxford University Press, vol. 74(4), pages 1139-1166.
    11. A. Minniti & F. Venturini, 2014. "R&D Policy and Schumpeterian Growth: Theory and Evidence," Working Papers wp945, Dipartimento Scienze Economiche, Universita' di Bologna.
    12. Dinopoulos, Elias & Thompson, Peter, 2000. "Endogenous growth in a cross-section of countries," Journal of International Economics, Elsevier, vol. 51(2), pages 335-362, August.
    13. Harashima, Taiji, 2010. "An Asymptotically Non-Scale Endogenous Growth Model," MPRA Paper 26025, University Library of Munich, Germany.
    14. Dinopoulos, Elias & Segerstrom, Paul, 2010. "Intellectual property rights, multinational firms and economic growth," Journal of Development Economics, Elsevier, vol. 92(1), pages 13-27, May.
    15. Dean Scrimgeour, 2015. "Dynamic Scoring in a Romer-Style Economy," Southern Economic Journal, Southern Economic Association, vol. 81(3), pages 697-723, January.
    16. Davis, Lewis S., 2008. "Scale effects in growth: A role for institutions," Journal of Economic Behavior & Organization, Elsevier, vol. 66(2), pages 403-419, May.
    17. Kaixing Huang, 2016. "Demographic Transition and the Unobservable Scale Effects of Economic Growth," School of Economics and Public Policy Working Papers 2016-08, University of Adelaide, School of Economics and Public Policy.
    18. Iordanis Petsas, 2010. "Sustained Comparative Advantage and Semi‐Endogenous Growth," Review of Development Economics, Wiley Blackwell, vol. 14(1), pages 34-47, February.
    19. Cozzi, Guido, 2017. "Endogenous growth, semi-endogenous growth... or both? A simple hybrid model," Economics Letters, Elsevier, vol. 154(C), pages 28-30.
    20. Klaus Prettner, 2013. "Population aging and endogenous economic growth," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(2), pages 811-834, April.

    More about this item

    Keywords

    General purpose technology; Special purpose technology; Division of labor in innovation; Economic growth; O14; O33;
    All these keywords.

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:20:y:2010:i:5:p:741-764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.