IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v29y2006i2p325-340.html
   My bibliography  Save this article

Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function

Author

Listed:
  • Takashi Kamihigashi

    ()

  • Santanu Roy

    ()

Abstract

This paper studies a one-sector optimal growth model with linear utility in which the production function is generally nonconvex, nondifferentiable, and discontinuous. The model also allows for a general form of irreversible investment. We show that every optimal path either converges to zero or reaches a positive steady state in finite time (and possibly jumps among different steady states afterwards). We establish conditions for extinction (convergence to zero), survival (boundedness away from zero), and the existence of a minimum safe standard of conservation. They extend the conditions known for the case of S-shaped production functions to a much large class of technologies. We also show that as the discount factor approaches one, optimal paths converge to a small neighborhood of the golden rule capital stock.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
  • Handle: RePEc:spr:joecth:v:29:y:2006:i:2:p:325-340
    DOI: 10.1007/s00199-005-0029-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-005-0029-7
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kamihigashi, Takashi, 1999. "Chaotic dynamics in quasi-static systems: theory and applications1," Journal of Mathematical Economics, Elsevier, vol. 31(2), pages 183-214, March.
    2. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
    3. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    4. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics,in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355 Elsevier.
    5. T.N. Srinivasan, 1962. "On a Two Sector Model of Growth," Cowles Foundation Discussion Papers 139R, Cowles Foundation for Research in Economics, Yale University.
    6. Costas Azariadis & Allan Drazen, 1990. "Threshold Externalities in Economic Development," The Quarterly Journal of Economics, Oxford University Press, vol. 105(2), pages 501-526.
    7. Spence, A Michael & Starrett, David, 1975. "Most Rapid Approach Paths in Accumulation Problems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 16(2), pages 388-403, June.
    8. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takashi Kamihigashi & Taiji Furusawa, 2006. "Immediately Reactive Equilibria in Infinitely Repeated Games with Additively Separable Continuous Payoffs," Discussion Paper Series 199, Research Institute for Economics & Business Administration, Kobe University.
    2. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    3. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    4. Takashi Kamihigashi & Taiji Furusawa, 2007. "Global Dynamics in Infinitely Repeated Games with Additively Separable Continuous Payoffs," Discussion Paper Series 210, Research Institute for Economics & Business Administration, Kobe University.
    5. repec:hal:journl:halshs-00267100 is not listed on IDEAS
    6. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    7. Michetti, Elisabetta, 2015. "Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 215-232.
    8. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    9. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    10. Serena Brianzoni & Cristiana Mammana & Elisabetta Michetti, 2012. "Local and Global Dynamics in a Discrete Time Growth Model with Nonconcave Production Function," Working Papers 70-2012, Macerata University, Department of Finance and Economic Sciences, revised Sep 2015.
    11. La Grandville, O. de, 2014. "Optimal growth theory: Challenging problems and suggested answers," Economic Modelling, Elsevier, vol. 36(C), pages 608-611.

    More about this item

    Keywords

    Nonconvex; nonsmooth; discontinuous technology; Extinction; Survival; Turnpike; Linear utility; C61; D90; O41; Q20;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:29:y:2006:i:2:p:325-340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.