IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/173.html
   My bibliography  Save this paper

A nonsmooth, nonconvex model of optimal growth

Author

Listed:
  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

  • Santanu Roy

    (Department of Economics, Southern Methodist University, USA)

Abstract

This paper analyzes the nature of economic dynamics in a one-sector optimal growth model in which the technology is generally nonconvex, nondifferentiable, and discontinuous. The model also allows for irreversible investment and unbounded growth. We develop various tools to overcome the technical difficulties posed by the generality of the model. We provide sufficient conditions for optimal paths to be bounded, to converge to zero, to be bounded away from zero, and to grow unboundedly. We also show that under certain conditions, if the discount factor is close to one, any optimal path from a given initial capital stock converges to a small neighborhood of the golden rule capital stock, at which sustainable consumption is maximized. If it is maximized at infinity, then as the discount factor approaches one, any optimal path either grows unboundedly or converges to an arbitrarily large capital stock.

Suggested Citation

  • Takashi Kamihigashi & Santanu Roy, 2005. "A nonsmooth, nonconvex model of optimal growth," Discussion Paper Series 173, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:173
    as

    Download full text from publisher

    File URL: https://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/dp173.pdf
    File Function: First version, 2005
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Dutta, Prajit K & Mitra, Tapan, 1989. "On Continuity of the Utility Function in Intertemporal Allocation Models: An Example," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 527-536, August.
    3. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
    4. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    5. Jones, Larry E. & Manuelli, Rodolfo E., 1997. "The sources of growth," Journal of Economic Dynamics and Control, Elsevier, vol. 21(1), pages 75-114, January.
    6. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    7. Montrucchio, Luigi, 1995. "A New Turnpike Theorem for Discounted Programs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 371-382, May.
    8. Kamihigashi, Takashi, 2003. "Necessity of transversality conditions for stochastic problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 140-149, March.
    9. Kaganovich, Michael, 1998. "Sustained endogenous growth with decreasing returns and heterogeneous capital," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1575-1603, August.
    10. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-644, August.
    11. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    12. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355, Elsevier.
    13. Takashi Kamihigashi, 2000. "The Policy Function of a Discrete-Choice Problem is a Random Number Generator," The Japanese Economic Review, Japanese Economic Association, vol. 51(1), pages 51-71, March.
    14. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    15. Costas Azariadis & Allan Drazen, 1990. "Threshold Externalities in Economic Development," The Quarterly Journal of Economics, Oxford University Press, vol. 105(2), pages 501-526.
    16. Yano, Makoto, 1984. "Competitive Equilibria on Turnpikes in a McKenzie Economy, I: A Neighborhood Turnpike Theorem," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 695-717, October.
    17. D. McFadden, 1967. "The Evaluation of Development Programmes," Review of Economic Studies, Oxford University Press, vol. 34(1), pages 25-50.
    18. J. Dolmas, 2010. "Endogenous Growth with Multisector Ramsey Models," Levine's Working Paper Archive 1383, David K. Levine.
    19. Joshi, Sumit, 1997. "Turnpike Theorems in Nonconvex Nonstationary Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 225-248, February.
    20. Guerrero-Luchtenberg, C.L., 2000. "A uniform neighborhood turnpike theorem and applications," Journal of Mathematical Economics, Elsevier, vol. 34(3), pages 329-357, November.
    21. Montrucchio, Luigi, 1994. "The neighbourhood turnpike property for continuous-time optimal growth models," Ricerche Economiche, Elsevier, vol. 48(3), pages 213-224, September.
    22. Takashi Kamihigashi, 2000. "Indivisible labor implies chaos," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(3), pages 585-598.
    23. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
    24. Dolmas, Jim, 1996. "Endogenous Growth in Multisector Ramsey Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 403-421, May.
    25. Jones, Larry E & Manuelli, Rodolfo E, 1990. "A Convex Model of Equilibrium Growth: Theory and Policy Implications," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 1008-1038, October.
    26. de Hek, Paul & Roy, Santanu, 2001. "On Sustained Growth under Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 801-813, August.
    27. McKenzie, Lionel W., 1982. "A primal route to the Turnpike and Liapounov stability," Journal of Economic Theory, Elsevier, vol. 27(1), pages 194-209, June.
    28. Mukul Majumdar & Tapan Mitra, 1983. "Dynamic Optimization with a Non-Convex Technology: The Case of a Linear Objective Function," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 143-151.
    29. Alexandre Scheinkman, Jose, 1976. "On optimal steady states of n-sector growth models when utility is discounted," Journal of Economic Theory, Elsevier, vol. 12(1), pages 11-30, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, Ngoc-Sang & Pham, Thi Kim Cuong, 2020. "Effects of foreign aid on the recipient country’s economic growth," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 52-68.
    2. Bambi, Mauro & Gozzi, Fausto, 2020. "Internal habits formation and optimality," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 165-172.
    3. Olivier Bruno & Cuong Van & Benoît Masquin, 2009. "When does a developing country use new technologies?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(2), pages 275-300, August.
    4. Akao, Ken-Ichi & Kamihigashi, Takashi & Nishimura, Kazuo, 2011. "Monotonicity and continuity of the critical capital stock in the Dechert–Nishimura model," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 677-682.
    5. Pham, Ngoc-Sang, 2017. "Dividend taxation in an infinite-horizon general equilibrium model," MPRA Paper 80580, University Library of Munich, Germany.
    6. Nguyen-Huu, Thanh Tam & Pham, Ngoc-Sang, 2021. "Escaping the middle income trap and getting economic growth: How does FDI can help the host country?," MPRA Paper 106151, University Library of Munich, Germany.
    7. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    8. Cuong Le Van & Çağrı Sağlam & Agah Turan, 2016. "Optimal Growth Strategy under Dynamic Threshold," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(6), pages 979-991, December.
    9. Dai, Darong, 2011. "Wealth Martingale and Neighborhood Turnpike Property in Dynamically Complete Market with Heterogeneous Investors," MPRA Paper 46416, University Library of Munich, Germany.
    10. Thai Ha‐Huy & Cuong Le Van & Thi‐Do‐Hanh Nguyen, 2020. "Optimal growth when consumption takes time," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(5), pages 1442-1461, September.
    11. Ngoc-Sang PHAM & Thi Kim Cuong PHAM, 2017. "Economic growth and escaping the poverty trap: how does development aid work?," Working Papers P197, FERDI.
    12. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    13. Ha-Huy, Thai & Tran, Nhat Thien, 2020. "A simple characterisation for sustained growth," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 141-147.
    14. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    15. Crettez, Bertrand & Hayek, Naila & Morhaim, Lisa, 2017. "Optimal growth with investment enhancing labor," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 23-36.
    16. Dam, My & Ha-Huy, Thai & Le Van, Cuong & Nguyen, Thi Tuyet Mai, 2020. "Economic dynamics with renewable resources and pollution," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 14-26.
    17. Holden, Thomas, 2016. "Existence and uniqueness of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 130142, ZBW - Leibniz Information Centre for Economics.
    18. Michetti, Elisabetta, 2015. "Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 215-232.
    19. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    20. Holden, Tom D., 2016. "Existence, uniqueness and computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 127430, ZBW - Leibniz Information Centre for Economics.
    21. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    22. Olivier Morand & Kevin Reffett & Suchismita Tarafdar, 2018. "Generalized Envelope Theorems: Applications to Dynamic Programming," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 650-687, March.
    23. Le Van, Cuong & Pham, Ngoc-Sang, 2021. "Why Does Productivity Matter?," MPRA Paper 106042, University Library of Munich, Germany.
    24. Serena Brianzoni & Cristiana Mammana & Elisabetta Michetti, 2012. "Local and Global Dynamics in a Discrete Time Growth Model with Nonconcave Production Function," Working Papers 70-2012, Macerata University, Department of Finance and Economic Sciences, revised Sep 2015.
    25. Darong Dai, 2013. "Wealth Martingale and Neighborhood Turnpike Property In Dynamically Complete Market With Heterogeneous Investors," Economic Research Guardian, Weissberg Publishing, vol. 3(2), pages 86-110, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    2. Ha-Huy, Thai & Tran, Nhat Thien, 2020. "A simple characterisation for sustained growth," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 141-147.
    3. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    4. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    5. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    6. Jensen, Martin Kaae, 2012. "Global stability and the “turnpike” in optimal unbounded growth models," Journal of Economic Theory, Elsevier, vol. 147(2), pages 802-832.
    7. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    8. Thanh Tam Nguyen-Huu & Ngoc-Sang Pham, 2021. "Escaping the middle income trap and getting economic growth: How does FDI can help the host country?," Working Papers halshs-03143087, HAL.
    9. Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5, Elsevier.
    10. Kaganovich, Michael, 1998. "Sustained endogenous growth with decreasing returns and heterogeneous capital," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1575-1603, August.
    11. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    12. Akao, Ken-Ichi & Kamihigashi, Takashi & Nishimura, Kazuo, 2011. "Monotonicity and continuity of the critical capital stock in the Dechert–Nishimura model," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 677-682.
    13. Santanu Roy, 2010. "On sustained economic growth with wealth effects," International Journal of Economic Theory, The International Society for Economic Theory, vol. 6(1), pages 29-45, March.
    14. Darong Dai, 2013. "Wealth Martingale and Neighborhood Turnpike Property In Dynamically Complete Market With Heterogeneous Investors," Economic Research Guardian, Weissberg Publishing, vol. 3(2), pages 86-110, December.
    15. Olivier Bruno & Cuong Van & Benoît Masquin, 2009. "When does a developing country use new technologies?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(2), pages 275-300, August.
    16. Wagener, F.O.O., 2013. "Economics of environmental regime shifts," CeNDEF Working Papers 13-08, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    17. Pham, Ngoc-Sang & Pham, Thi Kim Cuong, 2020. "Effects of foreign aid on the recipient country’s economic growth," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 52-68.
    18. Thomas M. Steger, 2000. "Productive Consumption and Growth in Developing Countries," Review of Development Economics, Wiley Blackwell, vol. 4(3), pages 365-375, October.
    19. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    20. Nishimura, Kazuo & Rudnicki, Ryszard & Stachurski, John, 2006. "Stochastic optimal growth with nonconvexities," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 74-96, February.

    More about this item

    Keywords

    Nonconvex; onsmooth; and discontinuous technology; Optimal growth; Unbounded growth; Extinction; Neighborhood turnpike;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University). General contact details of provider: https://edirc.repec.org/data/rikobjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.