IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/139.html
   My bibliography  Save this paper

A Nonsmooth, Nonconvex Model of Optimal Growth

Author

Listed:
  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

  • Santanu Roy

    (Department of Economics, Southern Methodist University, USA)

Abstract

This paper analyzes the nature of economic dynamics in a one-sector optimal growth model in which the technology is generally nonconvex, nondifferentiable, and discontinuous. The model also allows for irreversible investment and unbounded growth. We provide sufficient conditions for boundedness, extinction (convergence to zero), survival (boundedness away from zero), and unbounded growth. These conditions reveal that boundedness and survival are symmetrical phenomena, so are extinction and unbounded growth. Since many of the conditions are only local, it is possible that extinction occurs from small capital stocks, while unbounded growth occurs from large capital stocks. Despite such nonclassical results and nonclassical features such as nonconvexity and discontinuity, the model behaves much like a classical one as the discount factor approaches unity. In particular, we show that in most cases, if the discount factor is close to one, any optimal path from a given initial capital stock converges to a small neighborhood of what we define as the golden rule capital stock. If this stock is not finite, i.e., if sustainable consumption is maximized atinfinity, then as the discount factor approaches one, unbounded growth at least almost occurs.

Suggested Citation

  • Takashi Kamihigashi & Santanu Roy, 2003. "A Nonsmooth, Nonconvex Model of Optimal Growth," Discussion Paper Series 139, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:139
    as

    Download full text from publisher

    File URL: http://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/dp139.pdf
    File Function: First version, 2003
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Jones, Larry E. & Manuelli, Rodolfo E., 1997. "The sources of growth," Journal of Economic Dynamics and Control, Elsevier, vol. 21(1), pages 75-114, January.
    3. Kamihigashi, Takashi, 2003. "Necessity of transversality conditions for stochastic problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 140-149, March.
    4. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-644, August.
    5. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    6. Takashi Kamihigashi, 2000. "The Policy Function of a Discrete-Choice Problem is a Random Number Generator," The Japanese Economic Review, Japanese Economic Association, vol. 51(1), pages 51-71, March.
    7. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    8. D. McFadden, 1967. "The Evaluation of Development Programmes," Review of Economic Studies, Oxford University Press, vol. 34(1), pages 25-50.
    9. Joshi, Sumit, 1997. "Turnpike Theorems in Nonconvex Nonstationary Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 225-248, February.
    10. Guerrero-Luchtenberg, C.L., 2000. "A uniform neighborhood turnpike theorem and applications," Journal of Mathematical Economics, Elsevier, vol. 34(3), pages 329-357, November.
    11. Montrucchio, Luigi, 1994. "The neighbourhood turnpike property for continuous-time optimal growth models," Ricerche Economiche, Elsevier, vol. 48(3), pages 213-224, September.
    12. Takashi Kamihigashi, 2000. "Indivisible labor implies chaos," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(3), pages 585-598.
    13. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
    14. Jones, Larry E & Manuelli, Rodolfo E, 1990. "A Convex Model of Equilibrium Growth: Theory and Policy Implications," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 1008-1038, October.
    15. de Hek, Paul & Roy, Santanu, 2001. "On Sustained Growth under Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 801-813, August.
    16. McKenzie, Lionel W., 1982. "A primal route to the Turnpike and Liapounov stability," Journal of Economic Theory, Elsevier, vol. 27(1), pages 194-209, June.
    17. Mukul Majumdar & Tapan Mitra, 1983. "Dynamic Optimization with a Non-Convex Technology: The Case of a Linear Objective Function," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 143-151.
    18. Alexandre Scheinkman, Jose, 1976. "On optimal steady states of n-sector growth models when utility is discounted," Journal of Economic Theory, Elsevier, vol. 12(1), pages 11-30, February.
    19. Dutta, Prajit K & Mitra, Tapan, 1989. "On Continuity of the Utility Function in Intertemporal Allocation Models: An Example," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 527-536, August.
    20. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
    21. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    22. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    23. Montrucchio, Luigi, 1995. "A New Turnpike Theorem for Discounted Programs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 371-382, May.
    24. Kaganovich, Michael, 1998. "Sustained endogenous growth with decreasing returns and heterogeneous capital," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1575-1603, August.
    25. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics,in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355 Elsevier.
    26. Costas Azariadis & Allan Drazen, 1990. "Threshold Externalities in Economic Development," The Quarterly Journal of Economics, Oxford University Press, vol. 105(2), pages 501-526.
    27. Yano, Makoto, 1984. "Competitive Equilibria on Turnpikes in a McKenzie Economy, I: A Neighborhood Turnpike Theorem," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 695-717, October.
    28. J. Dolmas, 2010. "Endogenous Growth with Multisector Ramsey Models," Levine's Working Paper Archive 1383, David K. Levine.
    29. Dolmas, Jim, 1996. "Endogenous Growth in Multisector Ramsey Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 403-421, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Bruno & Cuong Van & Benoît Masquin, 2009. "When does a developing country use new technologies?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(2), pages 275-300, August.
    2. Akao, Ken-Ichi & Kamihigashi, Takashi & Nishimura, Kazuo, 2011. "Monotonicity and continuity of the critical capital stock in the Dechert–Nishimura model," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 677-682.
    3. Pham, Ngoc-Sang, 2017. "Dividend taxation in an infinite-horizon general equilibrium model," MPRA Paper 80580, University Library of Munich, Germany.
    4. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    5. Dai, Darong, 2011. "Wealth Martingale and Neighborhood Turnpike Property in Dynamically Complete Market with Heterogeneous Investors," MPRA Paper 46416, University Library of Munich, Germany.
    6. Ngoc-Sang PHAM & Thi Kim Cuong PHAM, 2017. "Economic growth and escaping the poverty trap: how does development aid work?," Working Papers P197, FERDI.
    7. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    8. Cuong Le Van & Çağrı Sağlam & Agah Turan, 2016. "Optimal Growth Strategy under Dynamic Threshold," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(6), pages 979-991, December.
    9. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    10. Crettez, Bertrand & Hayek, Naila & Morhaim, Lisa, 2017. "Optimal growth with investment enhancing labor," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 23-36.
    11. Holden, Thomas, 2016. "Existence and uniqueness of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 130142, ZBW - German National Library of Economics.
    12. Michetti, Elisabetta, 2015. "Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 215-232.
    13. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    14. Holden, Tom D., 2016. "Existence, uniqueness and computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 127430, ZBW - German National Library of Economics.
    15. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    16. repec:hal:journl:halshs-00267100 is not listed on IDEAS
    17. repec:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1241-5 is not listed on IDEAS
    18. Serena Brianzoni & Cristiana Mammana & Elisabetta Michetti, 2012. "Local and Global Dynamics in a Discrete Time Growth Model with Nonconcave Production Function," Working Papers 70-2012, Macerata University, Department of Finance and Economic Sciences, revised Sep 2015.
    19. Darong Dai, 2013. "Wealth Martingale and Neighborhood Turnpike Property In Dynamically Complete Market With Heterogeneous Investors," Economic Research Guardian, Weissberg Publishing, vol. 3(2), pages 86-110, December.

    More about this item

    Keywords

    Nonconvex; nonsmooth; and discontinuous technology; Optimal growth; Unbounded growth; Extinction; Neighborhood turnpike;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:139. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University). General contact details of provider: http://edirc.repec.org/data/rikobjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.