IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.17012.html
   My bibliography  Save this paper

A Deterministic and Linear Model of Dynamic Optimization

Author

Listed:
  • Somdeb Lahiri

Abstract

We introduce a model of infinite horizon linear dynamic optimization and obtain results concerning existence of solution and satisfaction of the competitive condition and transversality condition being unconditionally sufficient for optimality of a trajectory. We also show that under some mild restrictions the optimal trajectory satisfies the Euler condition and a related transversality condition. The optimal trajectory satisfies the functional equation of dynamic programming. Under an additional convexity assumption for the two-period constraint sets, we show that the optimal value function is concave and continuous. Linearity bites when it comes to the definition of optimal decision rules which can no longer be guaranteed to be single-valued. We show that if all the two-period constraint sets are convex, then the optimal decision rule is an upper semi-continuous correspondence. For linear cake-eating problems, we obtain monotonicity results for the optimal value function and a conditional monotonicity result for optimal decision rules. We also introduce the concept of a two-phase linear cake eating problem and obtain a necessary condition that must be satisfied by all solutions of such problems. We show that for a class of linear dynamic optimization problems, known as interlinked linear dynamic optimization problems, a slightly modified version of the functional equation of dynamic programming is satisfied.

Suggested Citation

  • Somdeb Lahiri, 2025. "A Deterministic and Linear Model of Dynamic Optimization," Papers 2502.17012, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2502.17012
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.17012
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:pseptp:hal-03261262 is not listed on IDEAS
    2. Ha-Huy, Thai & Tran, Nhat-Thien, 2019. "A simple characterization for sustained growth," MPRA Paper 94079, University Library of Munich, Germany.
    3. Ha-Huy, Thai & Tran, Nhat Thien, 2020. "A simple characterisation for sustained growth," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 141-147.
    4. Takashi Kamihigashi & Taiji Furusawa, 2006. "Immediately Reactive Equilibria in Infinitely Repeated Games with Additively Separable Continuous Payoffs," Discussion Paper Series 199, Research Institute for Economics & Business Administration, Kobe University.
    5. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    6. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    7. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    8. repec:hal:journl:hal-03261262 is not listed on IDEAS
    9. Michetti, Elisabetta, 2015. "Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 215-232.
    10. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    11. Stefano Bosi & Thai Ha-Hui, 2023. "A multidimensional, nonconvex model of optimal growth," Documents de recherche 23-07, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    12. Olivier Morand & Kevin Reffett & Suchismita Tarafdar, 2018. "Generalized Envelope Theorems: Applications to Dynamic Programming," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 650-687, March.
    13. Liuchun Deng & Minako Fujio & M. Ali Khan, 2023. "On optimal extinction in the matchbox two-sector model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(2), pages 445-494, August.
    14. Bosi, Stefano & Ha-Huy, Thai, 2023. "A multidimensional, nonconvex model of optimal growth," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    15. Liuchun Deng & Minako Fujio & M. Ali Khan, 2022. "On Sustainability and Survivability in the Matchbox Two-Sector Model: A Complete Characterization of Optimal Extinction," Papers 2202.02209, arXiv.org.
    16. repec:hal:cesptp:hal-03261262 is not listed on IDEAS
    17. Dam, My & Ha-Huy, Thai & Le Van, Cuong & Nguyen, Thi Tuyet Mai, 2020. "Economic dynamics with renewable resources and pollution," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 14-26.
    18. Ken-Ichi Akao & Hitoshi Ishii & Takashi Kamihigashi & Kazuo Nishimura, 2019. "Existence of an optimal path in a continuous-time nonconcave Ramsey model," RIEEM Discussion Paper Series 1905, Research Institute for Environmental Economics and Management, Waseda University.
    19. Serena Brianzoni & Cristiana Mammana & Elisabetta Michetti, 2012. "Local and Global Dynamics in a Discrete Time Growth Model with Nonconcave Production Function," Working Papers 70-2012, Macerata University, Department of Finance and Economic Sciences, revised Sep 2015.
    20. La Grandville, O. de, 2014. "Optimal growth theory: Challenging problems and suggested answers," Economic Modelling, Elsevier, vol. 36(C), pages 608-611.
    21. Takashi Kamihigashi & Taiji Furusawa, 2007. "Global Dynamics in Infinitely Repeated Games with Additively Separable Continuous Payoffs," Discussion Paper Series 210, Research Institute for Economics & Business Administration, Kobe University.
    22. Ali Khan, M. & Zhang, Zhixiang, 2023. "The random two-sector RSS model: On discounted optimal growth without Ramsey-Euler conditions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    23. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.17012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.