IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v108y2015icp215-232.html
   My bibliography  Save this article

Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate

Author

Listed:
  • Michetti, Elisabetta

Abstract

In this paper we study a discrete-time growth model of the Solow type with nonconcave production function where shareholders save more than workers and the population growth dynamics is described by the logistic equation. We prove that the resulting system has a compact global attractor and we describe its structure. We also perform a mainly numerical analysis to show that complex features are exhibited, related both to the structure of the coexisting attractors and to their basins. The study presented aims at showing the existence of complex dynamics when the elasticity of substitution between production factors is not too high (so that capital income declines) or the parameter in the logistic equation increases (so that the amplitude of movements in the population growth rate increases).

Suggested Citation

  • Michetti, Elisabetta, 2015. "Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 215-232.
  • Handle: RePEc:eee:matcom:v:108:y:2015:i:c:p:215-232
    DOI: 10.1016/j.matcom.2013.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413002243
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    2. Bohm, Volker & Kaas, Leo, 2000. "Differential savings, factor shares, and endogenous growth cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 965-980, June.
    3. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 70(1), pages 65-94.
    4. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    5. Tramontana, Fabio & Gardini, Laura & Agliari, Anna, 2011. "Endogenous cycles in discontinuous growth models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(8), pages 1625-1639.
    6. Brianzoni Serena & Mammana Cristiana & Michetti Elisabetta, 2007. "Complex Dynamics in the Neoclassical Growth Model with Differential Savings and Non-Constant Labor Force Growth," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(3), pages 1-19, September.
    7. T. W. Swan, 1956. "ECONOMIC GROWTH and CAPITAL ACCUMULATION," The Economic Record, The Economic Society of Australia, vol. 32(2), pages 334-361, November.
    8. Revankar, Nagesh S, 1971. "A Class of Variable Elasticity of Substitution Production Functions," Econometrica, Econometric Society, vol. 39(1), pages 61-71, January.
    9. Bischi, Gian Italo & Gardini, Laura & Kopel, Michael, 2000. "Analysis of global bifurcations in a market share attraction model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 855-879, June.
    10. Serena Brianzoni, & Cristiana Mammana, & Elisabetta Michetti,, 2006. "Global attractor in Solow growth model with differential savings and endogenic labor force growth," Working Papers 35-2006, Macerata University, Department of Finance and Economic Sciences, revised Oct 2008.
    11. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    12. Mukul Majumdar & Tapan Mitra, 1983. "Dynamic Optimization with a Non-Convex Technology: The Case of a Linear Objective Function," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 143-151.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:108:y:2015:i:c:p:215-232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.