IDEAS home Printed from https://ideas.repec.org/a/spr/inrvec/v71y2024i2d10.1007_s12232-023-00444-5.html
   My bibliography  Save this article

Causality between stock indices and cryptocurrencies before and during the Russo–Ukrainian war

Author

Listed:
  • Nidhal Mgadmi

    (University of Manouba-Tunisia)

  • Tarek Sadraoui

    (University of Manouba-Tunisia)

  • Ameni Abidi

    (University of Manouba-Tunisia)

Abstract

In this paper, we study the unidirectional interdependence between the stock indices of Japan, Canada, Germany, France, Russia, Ukraine, and the United States with the seven most popular cryptocurrencies: Bitcoin, Ethereum, Litecoin, Dash, Ripple, DigiByte, and XEM. We focus on two sub-periods: the first before the war in July 1, 2017 to September 31, 2019 and the second during the war in the start of the Russian invasion of Ukraine to December 16, 2023. We use the Granger causality test (Econom J Econom Soc 37:424–438, 1969) in levels to investigate the strong dependence between the seven stock indices and the seven cryptocurrencies. We find that the unidirectional dependence between these two asset classes disappears during the war due to high volatility, as evidenced by the GARCH and FGARCH models.

Suggested Citation

  • Nidhal Mgadmi & Tarek Sadraoui & Ameni Abidi, 2024. "Causality between stock indices and cryptocurrencies before and during the Russo–Ukrainian war," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 71(2), pages 301-323, June.
  • Handle: RePEc:spr:inrvec:v:71:y:2024:i:2:d:10.1007_s12232-023-00444-5
    DOI: 10.1007/s12232-023-00444-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12232-023-00444-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12232-023-00444-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maghyereh, Aktham & Abdoh, Hussein, 2020. "Tail dependence between Bitcoin and financial assets: Evidence from a quantile cross-spectral approach," International Review of Financial Analysis, Elsevier, vol. 71(C).
    2. Kamal, Md Rajib & Ahmed, Shaker & Hasan, Mostafa Monzur, 2023. "The impact of the Russia-Ukraine crisis on the stock market: Evidence from Australia," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    3. Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016. "What drives Bitcoin price?," Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
    4. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
    5. Anders Stensås & Magnus Frostholm Nygaard & Khine Kyaw & Sirimon Treepongkaruna, 2019. "Can Bitcoin be a diversifier, hedge or safe haven tool?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1593072-159, January.
    6. Muhammad Ali Nasir & Min Du, 2018. "Integration of Financial Markets in Post Global Financial Crises and Implications for British Financial Sector: Analysis Based on A Panel VAR Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 363-388, June.
    7. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    8. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Boubaker, Sabri & Goodell, John W. & Pandey, Dharen Kumar & Kumari, Vineeta, 2022. "Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 48(C).
    10. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    11. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    12. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-441, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    14. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    15. Lo, Gaye-Del & Marcelin, Isaac & Bassène, Théophile & Sène, Babacar, 2022. "The Russo-Ukrainian war and financial markets: the role of dependence on Russian commodities," Finance Research Letters, Elsevier, vol. 50(C).
    16. Goodell, John W. & Yadav, Miklesh Prasad & Ruan, Junhu & Abedin, Mohammad Zoynul & Malhotra, Nidhi, 2023. "Traditional assets, digital assets and renewable energy: Investigating connectedness during COVID-19 and the Russia-Ukraine war," Finance Research Letters, Elsevier, vol. 58(PA).
    17. Khalfaoui, Rabeh & Gozgor, Giray & Goodell, John W., 2023. "Impact of Russia-Ukraine war attention on cryptocurrency: Evidence from quantile dependence analysis," Finance Research Letters, Elsevier, vol. 52(C).
    18. Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).
    19. Feng, Wenjun & Wang, Yiming & Zhang, Zhengjun, 2018. "Informed trading in the Bitcoin market," Finance Research Letters, Elsevier, vol. 26(C), pages 63-70.
    20. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    21. Yousaf, Imran & Patel, Ritesh & Yarovaya, Larisa, 2022. "The reaction of G20+ stock markets to the Russia–Ukraine conflict “black-swan” event: Evidence from event study approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 35(C).
    22. Isaac Appiah-Otoo, 2023. "The Impact of the Russia-Ukraine War on the Cryptocurrency Market," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 4(1), pages 1-5.
    23. Wang, Pengfei & Zhang, Wei & Li, Xiao & Shen, Dehua, 2019. "Is cryptocurrency a hedge or a safe haven for international indices? A comprehensive and dynamic perspective," Finance Research Letters, Elsevier, vol. 31(C), pages 1-18.
    24. Nakano, Masafumi & Takahashi, Akihiko & Takahashi, Soichiro, 2018. "Bitcoin technical trading with artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 587-609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    4. Zvonko Merkaš & Vlasta Roška, 2021. "The Impact of Unsystematic Factors on Bitcoin Value," JRFM, MDPI, vol. 14(11), pages 1-17, November.
    5. Jlassi, Nabila Boukef & Jeribi, Ahmed & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Subsample analysis of stock market – cryptocurrency returns tail dependence: A copula approach for the tails," Finance Research Letters, Elsevier, vol. 58(PA).
    6. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    7. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    8. Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 87-110.
    9. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    10. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    11. Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Papers 1903.06033, arXiv.org, revised Apr 2019.
    12. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    13. David L. John & Sebastian Binnewies & Bela Stantic, 2024. "Cryptocurrency Price Prediction Algorithms: A Survey and Future Directions," Forecasting, MDPI, vol. 6(3), pages 1-35, August.
    14. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    15. Zura Kakushadze, 2018. "Cryptoasset Factor Models," Papers 1811.07860, arXiv.org, revised Feb 2019.
    16. Bouteska, Ahmed & Hassan, M. Kabir & Rashid, Mamunur & Bilgin, Mehmet Hüseyin, 2024. "The dynamics of bonds, commodities and bitcoin based on NARDL approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 58-70.
    17. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    18. Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    20. Vasu Kalariya & Pushpendra Parmar & Patel Jay & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba & Bogdan-Constantin Neagu, 2022. "Stochastic Neural Networks-Based Algorithmic Trading for the Cryptocurrency Market," Mathematics, MDPI, vol. 10(9), pages 1-15, April.

    More about this item

    Keywords

    FGARCH; Russo–Ukrainian war; Cryptocurrencies; FGARCH; Causality;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • E11 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Marxian; Sraffian; Kaleckian
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:inrvec:v:71:y:2024:i:2:d:10.1007_s12232-023-00444-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.