IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v25y2023i4d10.1007_s10796-022-10314-0.html
   My bibliography  Save this article

How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach

Author

Listed:
  • Vinay Singh

    (BASF SE
    University of Siegen)

  • Brijesh Nanavati

    (BASF Services Europe GmbH)

  • Arpan Kumar Kar

    (Indian Institute of Technology Delhi)

  • Agam Gupta

    (Indian Institute of Technology Delhi)

Abstract

One of the core challenges in digital marketing is that the business conditions continuously change, which impacts the reception of campaigns. A winning campaign strategy can become unfavored over time, while an old strategy can gain new traction. In data driven digital marketing and web analytics, A/B testing is the prevalent method of comparing digital campaigns, choosing the winning ad, and deciding targeting strategy. A/B testing is suitable when testing variations on similar solutions and having one or more metrics that are clear indicators of success or failure. However, when faced with a complex problem or working on future topics, A/B testing fails to deliver and achieving long-term impact from experimentation is demanding and resource intensive. This study proposes a reinforcement learning based model and demonstrates its application to digital marketing campaigns. We argue and validate with actual-world data that reinforcement learning can help overcome some of the critical challenges that A/B testing, and popular Machine Learning methods currently used in digital marketing campaigns face. We demonstrate the effectiveness of the proposed technique on real actual data for a digital marketing campaign collected from a firm.

Suggested Citation

  • Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
  • Handle: RePEc:spr:infosf:v:25:y:2023:i:4:d:10.1007_s10796-022-10314-0
    DOI: 10.1007/s10796-022-10314-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-022-10314-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-022-10314-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominique M. Hanssens, 2018. "The value of empirical generalizations in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(1), pages 6-8, January.
    2. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    3. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    4. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    5. Swen Nadkarni & Reinhard Prügl, 2021. "Digital transformation: a review, synthesis and opportunities for future research," Management Review Quarterly, Springer, vol. 71(2), pages 233-341, April.
    6. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    7. Oliver J. Rutz & George F. Watson, 2019. "Endogeneity and marketing strategy research: an overview," Journal of the Academy of Marketing Science, Springer, vol. 47(3), pages 479-498, May.
    8. Zhang, Yuchang & Bai, Ruibin & Qu, Rong & Tu, Chaofan & Jin, Jiahuan, 2022. "A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties," European Journal of Operational Research, Elsevier, vol. 300(2), pages 418-427.
    9. Kanishka Misra & Eric M. Schwartz & Jacob Abernethy, 2019. "Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments," Marketing Science, INFORMS, vol. 38(2), pages 226-252, March.
    10. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    11. Silvia Chiusano & Tania Cerquitelli & Robert Wrembel & Daniele Quercia, 2021. "Breakthroughs on Cross-Cutting Data Management, Data Analytics, and Applied Data Science," Information Systems Frontiers, Springer, vol. 23(1), pages 1-7, February.
    12. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    13. Thomas Davenport & Abhijit Guha & Dhruv Grewal & Timna Bressgott, 2020. "How artificial intelligence will change the future of marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 24-42, January.
    14. Hemant Rathore & Sanjay K. Sahay & Piyush Nikam & Mohit Sewak, 2021. "Robust Android Malware Detection System Against Adversarial Attacks Using Q-Learning," Information Systems Frontiers, Springer, vol. 23(4), pages 867-882, August.
    15. Stourm, Valeria & Bax, Eric, 2017. "Incorporating hidden costs of annoying ads in display auctions," International Journal of Research in Marketing, Elsevier, vol. 34(3), pages 622-640.
    16. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    17. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    18. Dawn Iacobucci & Maria Petrescu & Anjala Krishen & Michael Bendixen, 2019. "The state of marketing analytics in research and practice," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 152-181, September.
    19. Reema Aswani & Arpan Kumar Kar & P. Vigneswara Ilavarasan, 2018. "Detection of Spammers in Twitter marketing: A Hybrid Approach Using Social Media Analytics and Bio Inspired Computing," Information Systems Frontiers, Springer, vol. 20(3), pages 515-530, June.
    20. Kim, Juran & Kang, Seungmook & Lee, Ki Hoon, 2021. "Evolution of digital marketing communication: Bibliometric analysis and network visualization from key articles," Journal of Business Research, Elsevier, vol. 130(C), pages 552-563.
    21. Chen, Shiuann-Shuoh & Choubey, Bhaskar & Singh, Vinay, 2021. "A neural network based price sensitive recommender model to predict customer choices based on price effect," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    22. Pradeep Chintagunta & Dominique M. Hanssens & John R. Hauser, 2016. "Editorial—Marketing Science and Big Data," Marketing Science, INFORMS, vol. 35(3), pages 341-342, May.
    23. Shrihari Sridhar & Eric Fang, 2019. "New vistas for marketing strategy: digital, data-rich, and developing market (D3) environments," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 977-985, November.
    24. Sara Quach & Park Thaichon & Kelly D. Martin & Scott Weaven & Robert W. Palmatier, 2022. "Digital technologies: tensions in privacy and data," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1299-1323, November.
    25. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    26. Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
    27. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    2. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    3. Aimé, Isabelle & Berger-Remy, Fabienne & Laporte, Marie-Eve, 2022. "The brand, the persona and the algorithm: How datafication is reconfiguring marketing work☆," Journal of Business Research, Elsevier, vol. 145(C), pages 814-827.
    4. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    5. Sagarika Mishra & Michael T. Ewing & Holly B. Cooper, 2022. "Artificial intelligence focus and firm performance," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1176-1197, November.
    6. Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
    7. Andrea Mauro & Andrea Sestino & Andrea Bacconi, 2022. "Machine learning and artificial intelligence use in marketing: a general taxonomy," Italian Journal of Marketing, Springer, vol. 2022(4), pages 439-457, December.
    8. Akter, Shahriar & Dwivedi, Yogesh K. & Sajib, Shahriar & Biswas, Kumar & Bandara, Ruwan J. & Michael, Katina, 2022. "Algorithmic bias in machine learning-based marketing models," Journal of Business Research, Elsevier, vol. 144(C), pages 201-216.
    9. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    10. Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
    11. van Giffen, Benjamin & Herhausen, Dennis & Fahse, Tobias, 2022. "Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods," Journal of Business Research, Elsevier, vol. 144(C), pages 93-106.
    12. Huang, Ming-Hui & Rust, Roland T., 2022. "A Framework for Collaborative Artificial Intelligence in Marketing," Journal of Retailing, Elsevier, vol. 98(2), pages 209-223.
    13. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    14. De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
    15. Miikka Blomster & Timo Koivumäki, 2022. "Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing," Information Systems and e-Business Management, Springer, vol. 20(1), pages 123-169, March.
    16. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    17. David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
    18. Mengzhou Zhuang & Eric (Er) Fang & Jongkuk Lee & Xiaoling Li, 2021. "The Effects of Price Rank on Clicks and Conversions in Product List Advertising on Online Retail Platforms," Information Systems Research, INFORMS, vol. 32(4), pages 1412-1430, December.
    19. Weijia Dai & Hyunjin Kim & Michael Luca, 2023. "Frontiers: Which Firms Gain from Digital Advertising? Evidence from a Field Experiment," Marketing Science, INFORMS, vol. 42(3), pages 429-439, May.
    20. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:25:y:2023:i:4:d:10.1007_s10796-022-10314-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.