IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i3d10.1007_s13198-023-02210-w.html
   My bibliography  Save this article

Reliability modelling using ranking algorithm for parameter evaluation

Author

Listed:
  • Shalini Sharma

    (Galgotias University)

  • Naresh Kumar

    (Galgotias University)

  • Kuldeep Singh Kaswan

    (Galgotias University)

Abstract

Big data delivers high velocity, high volume, and high veracity data in vast quantities. Analyzing and handling this data requires new software, fast and high-capacity hardware, and trained individuals. One can determine the quality of such data models by assessing the software's reliability at a certain level after considering all the external and environmental factors affecting the software functionality. There are many existing reliability models, but the performance of these models regarding Big Data is still questionable. Thus, we need to develop a model that best suits the big data environment and accurately predicts the fault likely to occur. We developed a hybrid model to determine the software reliability using big fault data. The model included external factors, like human interaction and hardware malfunctioning resulting from the volume, veracity, and velocity of Big Data while determining software reliability, giving better performance and estimation accuracy than the existing well-known models. This paper proposes ten new hybrid models used for handling software reliability of big data. The intensity function and mean value of the proposed hybrid models were derived by combining well-known models' mean value and intensity value function. The parameter evaluation was done using the maximum likelihood method and ranking algorithm within the specified range of the guess vector. The data was collected using Big Data analysis. The best model out of the proposed ten is selected based on estimation accuracy and weighted function value. The chosen model was validated using a set of comparison criteria and estimation accuracy comparison. A t-test was also done to show that both the developed model's estimated and observed values were drawn from the same population pool. The comparisons and experiment results strengthen our claim regarding the better performance of our developed model over existing ones.

Suggested Citation

  • Shalini Sharma & Naresh Kumar & Kuldeep Singh Kaswan, 2024. "Reliability modelling using ranking algorithm for parameter evaluation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(3), pages 1245-1260, March.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02210-w
    DOI: 10.1007/s13198-023-02210-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02210-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02210-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Hoang, 2003. "Software reliability and cost models: Perspectives, comparison, and practice," European Journal of Operational Research, Elsevier, vol. 149(3), pages 475-489, September.
    2. Harikesh Bahadur Yadav & Dilip Kumar Yadav, 2017. "Early software reliability analysis using reliability relevant software metrics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2097-2108, December.
    3. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    4. Yaghoobi, Tahere, 2020. "Parameter optimization of software reliability models using improved differential evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 46-62.
    5. Li, Meng & Sadoughi, Mohammadkazem & Hu, Zhen & Hu, Chao, 2020. "A hybrid Gaussian process model for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Sangeeta & Kapil Sharma & Manju Bala, 2020. "An ecological space based hybrid swarm-evolutionary algorithm for software reliability model parameter estimation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 77-92, February.
    7. Pham, Hoang & Zhang, Xuemei, 2003. "NHPP software reliability and cost models with testing coverage," European Journal of Operational Research, Elsevier, vol. 145(2), pages 443-454, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakshi Singhal & P. K. Kapur & Vivek Kumar & Saurabh Panwar, 2024. "Stochastic debugging based reliability growth models for Open Source Software project," Annals of Operations Research, Springer, vol. 340(1), pages 531-569, September.
    2. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    3. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    4. Aktekin, Tevfik & Caglar, Toros, 2013. "Imperfect debugging in software reliability: A Bayesian approach," European Journal of Operational Research, Elsevier, vol. 227(1), pages 112-121.
    5. Xiaoyue Jiang & Donglei Du & Thomas G. Ray, 2007. "On optimality of one‐bug‐look‐ahead policies for a software testing model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 346-355, April.
    6. Chiu, Kuei-Chen & Huang, Yeu-Shiang & Lee, Tzai-Zang, 2008. "A study of software reliability growth from the perspective of learning effects," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1410-1421.
    7. Min Xie & Chengjie Xiong & Szu-Hui Ng, 2014. "A study of N-version programming and its impact on software availability," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2145-2157, October.
    8. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    10. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    11. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    12. Aaltonen, Aleksi Ville & Alaimo, Cristina & Kallinikos, Jannis, 2021. "The making of data commodities: data analytics as an embedded process," LSE Research Online Documents on Economics 110296, London School of Economics and Political Science, LSE Library.
    13. Anke Joubert & Matthias Murawski & Markus Bick, 2023. "Measuring the Big Data Readiness of Developing Countries – Index Development and its Application to Africa," Information Systems Frontiers, Springer, vol. 25(1), pages 327-350, February.
    14. Chih-Chiang Fang & Chun-Wu Yeh, 2016. "Effective confidence interval estimation of fault-detection process of software reliability growth models," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2878-2892, September.
    15. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2025. "Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 61-93, January.
    16. Rampersad, Giselle, 2020. "Robot will take your job: Innovation for an era of artificial intelligence," Journal of Business Research, Elsevier, vol. 116(C), pages 68-74.
    17. Anu Aggarwal & Sudeep Kumar & Ritu Gupta, 2024. "Testing coverage based NHPP software reliability growth modeling with testing effort and change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5157-5166, November.
    18. Sidney Anderson, 2024. "Expanding data literacy to include data preparation: building a sound marketing analytics foundation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 227-234, June.
    19. Chiara Mio & Silvia Panfilo & Benedetta Blundo, 2020. "Sustainable development goals and the strategic role of business: A systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3220-3245, December.
    20. Magdalena Rusch & Josef‐Peter Schöggl & Rupert J. Baumgartner, 2023. "Application of digital technologies for sustainable product management in a circular economy: A review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1159-1174, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02210-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.