IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i3d10.1007_s13198-023-02210-w.html
   My bibliography  Save this article

Reliability modelling using ranking algorithm for parameter evaluation

Author

Listed:
  • Shalini Sharma

    (Galgotias University)

  • Naresh Kumar

    (Galgotias University)

  • Kuldeep Singh Kaswan

    (Galgotias University)

Abstract

Big data delivers high velocity, high volume, and high veracity data in vast quantities. Analyzing and handling this data requires new software, fast and high-capacity hardware, and trained individuals. One can determine the quality of such data models by assessing the software's reliability at a certain level after considering all the external and environmental factors affecting the software functionality. There are many existing reliability models, but the performance of these models regarding Big Data is still questionable. Thus, we need to develop a model that best suits the big data environment and accurately predicts the fault likely to occur. We developed a hybrid model to determine the software reliability using big fault data. The model included external factors, like human interaction and hardware malfunctioning resulting from the volume, veracity, and velocity of Big Data while determining software reliability, giving better performance and estimation accuracy than the existing well-known models. This paper proposes ten new hybrid models used for handling software reliability of big data. The intensity function and mean value of the proposed hybrid models were derived by combining well-known models' mean value and intensity value function. The parameter evaluation was done using the maximum likelihood method and ranking algorithm within the specified range of the guess vector. The data was collected using Big Data analysis. The best model out of the proposed ten is selected based on estimation accuracy and weighted function value. The chosen model was validated using a set of comparison criteria and estimation accuracy comparison. A t-test was also done to show that both the developed model's estimated and observed values were drawn from the same population pool. The comparisons and experiment results strengthen our claim regarding the better performance of our developed model over existing ones.

Suggested Citation

  • Shalini Sharma & Naresh Kumar & Kuldeep Singh Kaswan, 2024. "Reliability modelling using ranking algorithm for parameter evaluation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(3), pages 1245-1260, March.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02210-w
    DOI: 10.1007/s13198-023-02210-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02210-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02210-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    2. Yaghoobi, Tahere, 2020. "Parameter optimization of software reliability models using improved differential evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 46-62.
    3. Li, Meng & Sadoughi, Mohammadkazem & Hu, Zhen & Hu, Chao, 2020. "A hybrid Gaussian process model for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Pham, Hoang, 2003. "Software reliability and cost models: Perspectives, comparison, and practice," European Journal of Operational Research, Elsevier, vol. 149(3), pages 475-489, September.
    5. Sangeeta & Kapil Sharma & Manju Bala, 2020. "An ecological space based hybrid swarm-evolutionary algorithm for software reliability model parameter estimation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 77-92, February.
    6. Pham, Hoang & Zhang, Xuemei, 2003. "NHPP software reliability and cost models with testing coverage," European Journal of Operational Research, Elsevier, vol. 145(2), pages 443-454, March.
    7. Harikesh Bahadur Yadav & Dilip Kumar Yadav, 2017. "Early software reliability analysis using reliability relevant software metrics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2097-2108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    2. Xiaoyue Jiang & Donglei Du & Thomas G. Ray, 2007. "On optimality of one‐bug‐look‐ahead policies for a software testing model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 346-355, April.
    3. Chiu, Kuei-Chen & Huang, Yeu-Shiang & Lee, Tzai-Zang, 2008. "A study of software reliability growth from the perspective of learning effects," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1410-1421.
    4. Min Xie & Chengjie Xiong & Szu-Hui Ng, 2014. "A study of N-version programming and its impact on software availability," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2145-2157, October.
    5. Shakshi Singhal & P. K. Kapur & Vivek Kumar & Saurabh Panwar, 2024. "Stochastic debugging based reliability growth models for Open Source Software project," Annals of Operations Research, Springer, vol. 340(1), pages 531-569, September.
    6. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    7. Aktekin, Tevfik & Caglar, Toros, 2013. "Imperfect debugging in software reliability: A Bayesian approach," European Journal of Operational Research, Elsevier, vol. 227(1), pages 112-121.
    8. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    10. Aaltonen, Aleksi Ville & Alaimo, Cristina & Kallinikos, Jannis, 2021. "The making of data commodities: data analytics as an embedded process," LSE Research Online Documents on Economics 110296, London School of Economics and Political Science, LSE Library.
    11. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2025. "Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 61-93, January.
    12. Anu Aggarwal & Sudeep Kumar & Ritu Gupta, 2024. "Testing coverage based NHPP software reliability growth modeling with testing effort and change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5157-5166, November.
    13. Sidney Anderson, 2024. "Expanding data literacy to include data preparation: building a sound marketing analytics foundation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 227-234, June.
    14. Michela Arnaboldi, 2018. "The Missing Variable in Big Data for Social Sciences: The Decision-Maker," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    15. Anike Sult & Janice Wobst & Rainer Lueg, 2024. "The role of training in implementing corporate sustainability: A systematic literature review," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(1), pages 1-30, January.
    16. Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    17. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    18. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    19. Andrea Kolková, 2024. "Data Analysis in Demand Forecasting: A Case Study of Poetry Book Sales in the European Area," Central European Business Review, Prague University of Economics and Business, vol. 2024(5), pages 51-69.
    20. Leogrande, Angelo, 2021. "The Destruction of Price-Representativeness," MPRA Paper 111239, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02210-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.