Factor based prediction model for customer behavior analysis
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-018-0739-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liran Einav & Jonathan Levin, 2014.
"The Data Revolution and Economic Analysis,"
Innovation Policy and the Economy, University of Chicago Press, vol. 14(1), pages 1-24.
- Liran Einav & Jonathan Levin, 2013. "The Data Revolution and Economic Analysis," NBER Chapters, in: Innovation Policy and the Economy, Volume 14, pages 1-24, National Bureau of Economic Research, Inc.
- Liran Einav & Jonathan D. Levin, 2013. "The Data Revolution and Economic Analysis," NBER Working Papers 19035, National Bureau of Economic Research, Inc.
- Liran Einav & Johnathan Levin, 2013. "The Data Revolution and Economic Analysis," Discussion Papers 12-017, Stanford Institute for Economic Policy Research.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
- Pratap Chandra Mandal, 2022. "Roles of Customer Databases and Database Marketing in Customer Relationship Management," International Journal of E-Business Research (IJEBR), IGI Global, vol. 18(1), pages 1-12, January.
- Gobinda Roy & Rajarshi Debnath & Partha Sarathi Mitra & Avinash K. Shrivastava, 2021. "Analytical study of low-income consumers’ purchase behaviour for developing marketing strategy," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 895-909, October.
- Vajala Ravi & Richa Saini & Manoj Kumar Varshney & Gurprit Grover, 2021. "Modelling of survival time of life insurance policies in India: a comparative study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 164-175, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcel Fafchamps & Julien Labonne, 2017.
"Do Politicians’ Relatives Get Better Jobs? Evidence from Municipal Elections,"
The Journal of Law, Economics, and Organization, Oxford University Press, vol. 33(2), pages 268-300.
- Marcel Fafchamps & Julien Labonne, 2014. "Do Politicians' Relatives Get Better Jobs? Evidence from Municipal Elections," CSAE Working Paper Series 2014-37, Centre for the Study of African Economies, University of Oxford.
- Dengler, Sebastian & Prüfer, Jens, 2021.
"Consumers' privacy choices in the era of big data,"
Games and Economic Behavior, Elsevier, vol. 130(C), pages 499-520.
- Prüfer, Jens & Dengler, Sebastian, 2018. "Consumers' Privacy Choices in the Era of Big Data," Discussion Paper 2018-012, Tilburg University, Center for Economic Research.
- Dengler, Sebastian & Prüfer, Jens, 2018. "Consumers' Privacy Choices in the Era of Big Data," Discussion Paper 2018-014, Tilburg University, Tilburg Law and Economic Center.
- Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022.
"Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications,"
Food Policy, Elsevier, vol. 112(C).
- Resce, Giuliano & Vaquero-Pineiro, Cristina, 2022. "Predicting Agri-food Quality across Space: A Machine Learning Model for the Acknowledgment of Geographical Indications," Economics & Statistics Discussion Papers esdp22082, University of Molise, Department of Economics.
- Abu Taher, Sheikh & Uddin, Md. Kama, 2018. "Use of big data in financial sector of Bangladesh – A review," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190348, International Telecommunications Society (ITS).
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Jin-Hyuk Kim & Tin Cheuk Leung, 2013. "Quantifying the Impacts of Digital Rights Management and E-Book Pricing on the E-Book Reader Market," Working Papers 13-03, NET Institute.
- Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024.
"Predicting dropout from higher education: Evidence from Italy,"
Economic Modelling, Elsevier, vol. 130(C).
- Marco Delogu & Raffaelle Lagravinese & Dimitri Paolini & Giuliano Resce, 2020. "Predicting dropout from higher education: Evidence from Italy," DEM Discussion Paper Series 22-06, Department of Economics at the University of Luxembourg.
- Vincze, János, 2017. "Információ és tudás. A big data egyes hatásai a közgazdaságtanra [Information and knowledge: some effects of big data on economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1148-1159.
- Justin Longo & Alan Rodney Dobell, 2018. "The Limits of Policy Analytics: Early Examples and the Emerging Boundary of Possibilities," Politics and Governance, Cogitatio Press, vol. 6(4), pages 5-17.
- Max Nathan & Anna Rosso, 2017.
"Innovative events,"
Development Working Papers
429, Centro Studi Luca d'Agliano, University of Milano, revised 08 Apr 2019.
- Nathan, Max & Rosso, Anna, 2019. "Innovative Events," SocArXiv t3jrq, Center for Open Science.
- Max Nathan & Anna Rosso, 2019. "Innovative events," CEP Discussion Papers dp1607, Centre for Economic Performance, LSE.
- Nathan, Max & Rosso, Anna, 2019. "Innovative Events," IZA Discussion Papers 12213, Institute of Labor Economics (IZA).
- Nathan, Max & Rosso, Anna, 2019. "Innovative events," LSE Research Online Documents on Economics 102626, London School of Economics and Political Science, LSE Library.
- Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
- Martin Browning & Thomas F. Crossley & Joachim Winter, 2014.
"The Measurement of Household Consumption Expenditures,"
Annual Review of Economics, Annual Reviews, vol. 6(1), pages 475-501, August.
- Martin Browning & Thomas Crossley & Joachim K. Winter, 2014. "The measurement of household consumption expenditures," IFS Working Papers W14/07, Institute for Fiscal Studies.
- Shaoming Cheng & Sukumar Ganapati & Giri Narasimhan & Farzana Beente Yusuf, 2022. "A machine learning‐based analysis of 311 requests in the Miami‐Dade County," Growth and Change, Wiley Blackwell, vol. 53(4), pages 1627-1645, December.
- Figlio, D. & Karbownik, K. & Salvanes, K.G., 2016.
"Education Research and Administrative Data,"
Handbook of the Economics of Education,,
Elsevier.
- David N. Figlio & Krzysztof Karbownik & Kjell G. Salvanes, 2015. "Education Research and Administrative Data," NBER Working Papers 21592, National Bureau of Economic Research, Inc.
- Figlio, David N. & Karbownik, Krzysztof & Salvanes, Kjell G., 2015. "Education Research and Administrative Data," IZA Discussion Papers 9474, Institute of Labor Economics (IZA).
- Figlio, David & Karbownik, Krzysztof & Salvanes, Kjell G., 2015. "Education Research and Administrative Data," Discussion Paper Series in Economics 24/2015, Norwegian School of Economics, Department of Economics.
- Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021.
"Filtering the intensity of public concern from social media count data with jumps,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
- Matteo Iacopini & Carlo R. M. A. Santagiustina, 2020. "Filtering the intensity of public concern from social media count data with jumps," Papers 2012.13267, arXiv.org.
- Matteo Iacopini & Carlo Romano Marcello Alessandro Santagiustina, 2021. "Filtering the Intensity of Public Concern from Social Media Count Data with Jumps," Post-Print hal-04494229, HAL.
- Matteo Iacopini & Carlo Romano Marcello Alessandro Santagiustina, 2021. "Filtering the Intensity of Public Concern from Social Media Count Data with Jumps," SciencePo Working papers Main hal-04494229, HAL.
- Laurent Bergé, 2018. "Efficient estimation of maximum likelihood models with multiple fixed-effects: the R package FENmlm," DEM Discussion Paper Series 18-13, Department of Economics at the University of Luxembourg.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Jian Gao & Tao Zhou, 2017. "Quantifying China's Regional Economic Complexity," Papers 1703.01292, arXiv.org, revised Nov 2017.
- Jens Prüfer & Christoph Schottmüller, 2021.
"Competing with Big Data,"
Journal of Industrial Economics, Wiley Blackwell, vol. 69(4), pages 967-1008, December.
- Prüfer, Jens & Schottmuller, C., 2017. "Competing with Big Data," Discussion Paper 2017-006, Tilburg University, Tilburg Law and Economic Center.
- Prüfer, Jens & Schottmuller, C., 2017. "Competing with Big Data," Other publications TiSEM 29de4480-00db-473b-a0ee-b, Tilburg University, School of Economics and Management.
- Prüfer, Jens & Schottmuller, C., 2017. "Competing with Big Data," Other publications TiSEM b09cad5c-e6eb-4fe7-9184-f, Tilburg University, School of Economics and Management.
- Prüfer, Jens & Schottmuller, C., 2017. "Competing with Big Data," Discussion Paper 2017-007, Tilburg University, Center for Economic Research.
- Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
More about this item
Keywords
Data mining; Correlation; Forecasting; Cluster analysis; Factor analysis; Principle component analysis; Customer; Prediction; Factor; Behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:4:d:10.1007_s13198-018-0739-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.