IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v19y2015i4p891-939.html
   My bibliography  Save this article

Dynamic credit investment in partially observed markets

Author

Listed:
  • Agostino Capponi
  • José Figueroa-López
  • Andrea Pascucci

Abstract

We consider the problem of maximizing the expected utility for a power investor who can allocate his wealth in a stock, a defaultable security, and a money market account. The dynamics of these security prices are governed by geometric Brownian motions modulated by a hidden continuous-time finite-state Markov chain. We reduce the partially observed stochastic control problem to a complete observation risk-sensitive control problem via the filtered regime switching probabilities. We separate the latter into predefault and postdefault dynamic optimization subproblems and obtain two coupled Hamilton–Jacobi–Bellman (HJB) partial differential equations. We prove the existence and uniqueness of a globally bounded classical solution to each HJB equation and give the corresponding verification theorem. We provide a numerical analysis showing that the investor increases his holdings in stock as the filter probability of being in high-growth regimes increases, and decreases his credit risk exposure as the filter probability of being in high default risk regimes gets larger. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Agostino Capponi & José Figueroa-López & Andrea Pascucci, 2015. "Dynamic credit investment in partially observed markets," Finance and Stochastics, Springer, vol. 19(4), pages 891-939, October.
  • Handle: RePEc:spr:finsto:v:19:y:2015:i:4:p:891-939
    DOI: 10.1007/s00780-015-0272-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-015-0272-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-015-0272-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5717 is not listed on IDEAS
    2. Vadim Linetsky, 2006. "Pricing Equity Derivatives Subject To Bankruptcy," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 255-282, April.
    3. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    4. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    5. Ang, Andrew & Bekaert, Geert, 2002. "Short rate nonlinearities and regime switches," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1243-1274, July.
    6. Rüdiger Frey & Thorsten Schmidt, 2012. "Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering," Finance and Stochastics, Springer, vol. 16(1), pages 105-133, January.
    7. Tomasz Bielecki & Inwon Jang, 2006. "Portfolio optimization with a defaultable security," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 113-127, June.
    8. Kraft, Holger & Steffensen, Mogens, 2009. "Asset allocation with contagion and explicit bankruptcy procedures," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 147-167, January.
    9. Alain BÉlanger & Steven E. Shreve & Dennis Wong, 2004. "A General Framework For Pricing Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 317-350, July.
    10. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    11. Ying Jiao & Huyên Pham, 2011. "Optimal investment with counterparty risk: a default-density model approach," Finance and Stochastics, Springer, vol. 15(4), pages 725-753, December.
    12. Tak Kuen Siu, 2011. "Long-term strategic asset allocation with inflation risk and regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1565-1580.
    13. Pham, Huyên, 2010. "Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1795-1820, August.
    14. Kazufumi Fujimoto & Hideo Nagai & Wolfgang Runggaldier, 2014. "Expected Log-Utility Maximization Under Incomplete Information and with Cox-Process Observations," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(1), pages 35-66, March.
    15. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2010. "What happens after a default: The conditional density approach," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1011-1032, July.
    16. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Lin & Chen, Lv & Qian, Linyi & Li, Danping & Yang, Zhixin, 2023. "Optimal investment and consumption strategies for pooled annuity with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 129-155.
    2. John R. Birge & Lijun Bo & Agostino Capponi, 2018. "Risk-Sensitive Asset Management and Cascading Defaults," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 1-28, February.
    3. Lijun Bo & Huafu Liao & Xiang Yu, 2017. "Risk Sensitive Portfolio Optimization with Default Contagion and Regime-Switching," Papers 1712.05676, arXiv.org, revised Oct 2018.
    4. Christoph Belak & Sören Christensen & Olaf Menkens, 2016. "Worst-Case Portfolio Optimization In A Market With Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-36, March.
    5. Oliver Janke, 2016. "Utility Maximization and Indifference Value under Risk and Information Constraints for a Market with a Change Point," Papers 1610.08644, arXiv.org.
    6. Lijun Bo & Agostino Capponi, 2016. "Optimal Investment under Information Driven Contagious Distress," Papers 1612.06133, arXiv.org.
    7. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    8. Lijun Bo & Agostino Capponi, 2017. "Optimal Credit Investment with Borrowing Costs," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 546-575, May.
    9. Lijun Bo & Agostino Capponi, 2017. "Robust Optimization of Credit Portfolios," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 30-56, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2014. "Partial information about contagion risk, self-exciting processes and portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 18-36.
    2. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2009. "What is the impact of stock market contagion on an investor's portfolio choice?," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 94-112, August.
    3. Fontana, Claudio & Schmidt, Thorsten, 2018. "General dynamic term structures under default risk," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3353-3386.
    4. Lijun Bo & Huafu Liao & Xiang Yu, 2017. "Risk Sensitive Portfolio Optimization with Default Contagion and Regime-Switching," Papers 1712.05676, arXiv.org, revised Oct 2018.
    5. Agostino Capponi & Lijun Bo, 2016. "Robust Optimization of Credit Portfolios," Papers 1603.08169, arXiv.org.
    6. Konermann, Patrick & Meinerding, Christoph & Sedova, Olga, 2013. "Asset allocation in markets with contagion: The interplay between volatilities, jump intensities, and correlations," Review of Financial Economics, Elsevier, vol. 22(1), pages 36-46.
    7. Kraft, Holger & Weiss, Farina, 2023. "Pandemic portfolio choice," European Journal of Operational Research, Elsevier, vol. 305(1), pages 451-462.
    8. Agostino Capponi & Jose Figueroa-Lopez & Jeffrey Nisen, 2011. "Pricing and Semimartingale Representations of Vulnerable Contingent Claims in Regime-Switching Markets," Papers 1110.0403, arXiv.org, revised Feb 2012.
    9. Giulia Di Nunno & Steffen Sjursen, 2013. "Information and optimal investment in defaultable assets," Papers 1312.6032, arXiv.org.
    10. He, Hui & Yang, Jiawen, 2011. "Regime-switching analysis of ADR home market pass-through," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 204-214, January.
    11. Krishnamurthy, Vikram & Leoff, Elisabeth & Sass, Jörn, 2018. "Filterbased stochastic volatility in continuous-time hidden Markov models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 1-21.
    12. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    13. Tim Leung & Michael Ludkovski, 2010. "Optimal Timing to Purchase Options," Papers 1008.3650, arXiv.org, revised Apr 2011.
    14. Tihana Skrinjaric, 2023. "Leading indicators of financial stress in Croatia: a regime switching approach," Public Sector Economics, Institute of Public Finance, vol. 47(2), pages 205-232.
    15. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2020. "Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
    16. Kim, Jinbeom & Leung, Tim, 2016. "Pricing derivatives with counterparty risk and collateralization: A fixed point approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 525-539.
    17. Bernd Scherer, 2020. "Alternative risk premia: contagion and portfolio choice," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 178-191, May.
    18. Salmerón Garrido, José Antonio & Nunno, Giulia Di & D'Auria, Bernardo, 2022. "Before and after default: information and optimal portfolio via anticipating calculus," DES - Working Papers. Statistics and Econometrics. WS 35411, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Claudio Fontana & Thorsten Schmidt, 2016. "General dynamic term structures under default risk," Papers 1603.03198, arXiv.org, revised Nov 2017.
    20. Agostino Capponi & Christoph Frei, 2017. "Systemic Influences on Optimal Equity-Credit Investment," Management Science, INFORMS, vol. 63(8), pages 2756-2771, August.

    More about this item

    Keywords

    Partial information; Filtering; Risk-sensitive control; Default risk; Hidden Markov chain; 93E20; 91G10; 49L20; 93E11; G11; C61; C11;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:19:y:2015:i:4:p:891-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.