IDEAS home Printed from
   My bibliography  Save this article

Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain


  • Jörn Sass


  • Ulrich Haussmann



We consider a multi-stock market model where prices satisfy a stochastic differential equation with instantaneous rates of return modeled as a continuous time Markov chain with finitely many states. Partial observation means that only the prices are observable. For the investor’s objective of maximizing the expected utility of the terminal wealth we derive an explicit representation of the optimal trading strategy in terms of the unnormalized filter of the drift process, using HMM filtering results and Malliavin calculus. The optimal strategy can be determined numerically and parameters can be estimated using the EM algorithm. The results are applied to historical prices. Copyright Springer-Verlag Berlin/Heidelberg 2004

Suggested Citation

  • Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
  • Handle: RePEc:spr:finsto:v:8:y:2004:i:4:p:553-577
    DOI: 10.1007/s00780-004-0132-9

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:8:y:2004:i:4:p:553-577. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.