IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v16y2006i2p255-282.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Pricing Equity Derivatives Subject To Bankruptcy

Author

Listed:
  • Vadim Linetsky

Abstract

We solve in closed form a parsimonious extension of the Black–Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock price. Combining a scale change and a measure change, the model dynamics is reduced to a linear stochastic differential equation whose solution is a diffusion process that plays a central role in the pricing of Asian options. The solution is in the form of a spectral expansion associated with the diffusion infinitesimal generator. The latter is closely related to the Schrödinger operator with Morse potential. Pricing formulas for both corporate bonds and stock options are obtained in closed form. Term credit spreads on corporate bonds and implied volatility skews of stock options are closely linked in this model, with parameters of the hazard rate specification controlling both the shape of the term structure of credit spreads and the slope of the implied volatility skew. Our analytical formulas are easy to implement and should prove useful to researchers and practitioners in corporate debt and equity derivatives markets.

Suggested Citation

  • Vadim Linetsky, 2006. "Pricing Equity Derivatives Subject To Bankruptcy," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 255-282, April.
  • Handle: RePEc:bla:mathfi:v:16:y:2006:i:2:p:255-282
    DOI: 10.1111/j.1467-9965.2006.00271.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2006.00271.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2006.00271.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:16:y:2006:i:2:p:255-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.