Author
Listed:
- G. K. Pramod
(Manipal Academy of Higher Education)
- U. C. Arunachala
(Manipal Academy of Higher Education)
- N. Madhwesh
(Manipal Academy of Higher Education)
- M. S. Manjunath
(Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education)
Abstract
Solar air heaters are characterized by poor thermal performance due to limited heat transfer capability of air, thereby necessitating the need for design modifications. Among a different system performance augmentation technique, turbulence promotors are widely used owing to its effectiveness. Based on design parameters such as geometry, size, pitch and arrangement of turbulence promoters, varying levels of heat transfer increment with the pressure drop penalty is achievable. This led to the development of new designs which could offer on optimum thermo-hydraulic performance for a wide range of Reynolds number. Such research invariably requires a thorough insight of data related to various design parameters and optimal thermal–hydraulic performance range. This article provides a detailed overview of various turbulence promotor designs and their optimal thermal–hydraulic performance ranges compiled from a wide spectrum of experimental and numerical studies. Apart from outlining the general flow characteristics of each turbulator design, this study also evaluates different metaheuristic optimization algorithm such as bonobo optimization (BO), particle swarm optimization and teaching–learning-based optimization algorithm for enhancing the thermal–hydraulic performance parameter (THPP). The study shows that the BO algorithm does not exhibit local trapping due to its self-adapting nature of the optimized parameters which makes it a promising choice for THPP optimization studies in air heater applications. The extensive review also shows that the arrangement pattern of rib turbulator plays a key role in thermo-hydraulic performance augmentation. Based on the BO optimization analysis, the range of THPP is determined for the optimized geometry of turbulence promoters. In the pool of rib design, transverse prism rib, multi-V-rib, multi-V-shaped rib with staggered rib, sinewave-shaped rib with gap and S-shaped ribs exhibits an optimal THPP range of 2.05–3.32, 2.43–2.94, 3.00–3.61, 1.58–3.40 and 2.05–3.74, respectively. Other turbulence promotor designs such as winglet vortex generator, dimple protrusion in arc shape and multi-V-baffles exhibits optimal THPP range of 1.95–2.2, 2.44–3.68 and 1.75–2.01, respectively. At the end, the study proposes key research gaps such as the use of combined ribs and vortex generators and discrete fin arrays of different geometry as future scope of research. Graphical abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04402-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.