IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006566.html
   My bibliography  Save this article

Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets

Author

Listed:
  • Srivastav, Ayushman
  • Maithani, Rajesh
  • Sharma, Sachin

Abstract

This research focuses on experimental and computational analysis of enhancement in thermal performance of a solar air heater with submerged impinging jets (SAHSIJ). The Application of submerged pipe jets generates a high impinging velocity and induces a significant degree of turbulence at the absorber plate, leading to elevated heat removal rates. This research investigates the effect of change in geometric parameters such as jet spacing ratio (Sj/Dh) from 0.108 to 0.433 at various jet angles (α) from 75° to 90° on the Nusselt number and frictional characteristics to improve the overall thermo-hydraulic performance parameter (THPP) of the system. The results obtained from SAHSIJ are compared with those of a smooth duct to determine the effectiveness in terms of the thermo-hydraulic performances parameter (THPP) of the system. It is found that the novel submerged pipe jet configuration in better in extracting heat from the absorber plate than the orifice jet and smooth duct solar air heater.

Suggested Citation

  • Srivastav, Ayushman & Maithani, Rajesh & Sharma, Sachin, 2024. "Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006566
    DOI: 10.1016/j.renene.2024.120588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.