IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006566.html
   My bibliography  Save this article

Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets

Author

Listed:
  • Srivastav, Ayushman
  • Maithani, Rajesh
  • Sharma, Sachin

Abstract

This research focuses on experimental and computational analysis of enhancement in thermal performance of a solar air heater with submerged impinging jets (SAHSIJ). The Application of submerged pipe jets generates a high impinging velocity and induces a significant degree of turbulence at the absorber plate, leading to elevated heat removal rates. This research investigates the effect of change in geometric parameters such as jet spacing ratio (Sj/Dh) from 0.108 to 0.433 at various jet angles (α) from 75° to 90° on the Nusselt number and frictional characteristics to improve the overall thermo-hydraulic performance parameter (THPP) of the system. The results obtained from SAHSIJ are compared with those of a smooth duct to determine the effectiveness in terms of the thermo-hydraulic performances parameter (THPP) of the system. It is found that the novel submerged pipe jet configuration in better in extracting heat from the absorber plate than the orifice jet and smooth duct solar air heater.

Suggested Citation

  • Srivastav, Ayushman & Maithani, Rajesh & Sharma, Sachin, 2024. "Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006566
    DOI: 10.1016/j.renene.2024.120588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
    2. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    3. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh kumar & Park, Myeong Hyun & Kim, Sung Chul, 2022. "Utilizing jet impingement on protrusion/dimple heated plate to improve the performance of double pass solar heat collector," Renewable Energy, Elsevier, vol. 181(C), pages 653-665.
    4. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    5. Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.
    6. Salman, Mohammad & Park, Myeong Hyeon & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Experimental analysis of single loop solar heat collector with jet impingement over indented dimples," Renewable Energy, Elsevier, vol. 169(C), pages 618-628.
    7. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    8. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    9. Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
    10. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    11. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Patnaik, Amar, 2016. "Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method," Renewable Energy, Elsevier, vol. 99(C), pages 118-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    2. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    3. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    4. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    6. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    7. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    8. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh kumar & Park, Myeong Hyun & Kim, Sung Chul, 2022. "Utilizing jet impingement on protrusion/dimple heated plate to improve the performance of double pass solar heat collector," Renewable Energy, Elsevier, vol. 181(C), pages 653-665.
    9. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    10. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    11. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    12. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    14. Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.
    15. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    16. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    17. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    18. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    19. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    20. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.