IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p954-977.html
   My bibliography  Save this article

Review and performance evaluation of roughened solar air heaters

Author

Listed:
  • Singh Bisht, Vijay
  • Kumar Patil, Anil
  • Gupta, Anirudh

Abstract

Solar air heater is an eco-friendly, economical and simple device which is used to harness solar energy for space heating, process heating and agricultural applications. The thermal performance of solar air heater can be improved by the application of artificial roughness on the underside of absorber surface. The heat transfer and friction characteristics of artificially roughened solar air heaters with different roughness geometries have been reviewed in this article. The article presents the authoritative account of the current progress on topic, discusses the previous developments, and throws light on the future directions. An attempt has been made to compare the performance of solar air heater having different types of roughness geometries based on correlations proposed in the literature. Thermo-hydraulic performance parameter (η), thermal efficiency (ηth), thermal efficiency improvement factor (TEIF), effective efficiency (ηeff), and exergetic efficiency (ηex) are evaluated to gauge the performance of different roughness geometries.

Suggested Citation

  • Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:954-977
    DOI: 10.1016/j.rser.2017.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117311796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2016. "Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate," Renewable Energy, Elsevier, vol. 96(PA), pages 233-243.
    2. Kumar, Anil & Kumar, Raj & Maithani, Rajesh & Chauhan, Ranchan & Sethi, Muneesh & Kumari, Anita & Kumar, Sushil & Kumar, Sunil, 2017. "Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage," Renewable Energy, Elsevier, vol. 109(C), pages 461-479.
    3. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2011. "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs," Energy, Elsevier, vol. 36(8), pages 5053-5064.
    4. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    5. Aharwal, K.R. & Gandhi, B.K. & Saini, J.S., 2008. "Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater," Renewable Energy, Elsevier, vol. 33(4), pages 585-596.
    6. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    7. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2017. "Thermohydraulic performance analysis of an arc shape wire roughened solar air heater," Renewable Energy, Elsevier, vol. 108(C), pages 598-614.
    8. Menasria, Fouad & Zedairia, Merouane & Moummi, Abdelhafid, 2017. "Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio," Energy, Elsevier, vol. 133(C), pages 593-608.
    9. Kumar, Anil & Saini, R.P. & Saini, J.S., 2013. "Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness," Renewable Energy, Elsevier, vol. 58(C), pages 151-163.
    10. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    11. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    12. Cortés, A. & Piacentini, R., 1990. "Improvement of the efficiency of a bare solar collector by means of turbulence promoters," Applied Energy, Elsevier, vol. 36(4), pages 253-261.
    13. Deo, Narinderpal Singh & Chander, Subhash & Saini, J.S., 2016. "Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs," Renewable Energy, Elsevier, vol. 91(C), pages 484-500.
    14. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Solar air heater with hyperbolic ribs: 3D simulation with experimental validation," Renewable Energy, Elsevier, vol. 113(C), pages 357-368.
    15. Gill, R.S. & Hans, V.S. & Saini, J.S. & Singh, Sukhmeet, 2017. "Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct," Renewable Energy, Elsevier, vol. 104(C), pages 148-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivakandhan, C. & Arjunan, T.V. & Matheswaran, M.M., 2020. "Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness," Renewable Energy, Elsevier, vol. 147(P1), pages 2345-2357.
    2. Singla, Mohit & Hans, Vishavjeet Singh & Singh, Sukhmeet, 2022. "CFD analysis of rib roughened solar evacuated tube collector for air heating," Renewable Energy, Elsevier, vol. 183(C), pages 78-89.
    3. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    4. Dimitrios Fidaros & Catherine Baxevanou & Michalina Markousi & Aris Tsangrassoulis, 2022. "Assessment of Various Trombe Wall Geometries with CFD Study," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    5. Hwi-Ung Choi & Kwang-Am Moon & Seong-Bhin Kim & Kwang-Hwan Choi, 2023. "CFD Analysis of the Heat Transfer and Fluid Flow Characteristics Using the Rectangular Rib Attached to the Fin Surface in a Solar Air Heater," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Tarek Kh. Abdelkader & Qizhou Fan & Eid S. Gaballah & Shaowei Wang & Yanlin Zhang, 2020. "Energy and Exergy Analysis of a Flat-Plate Solar Air Heater Artificially Roughened and Coated with a Novel Solar Selective Coating," Energies, MDPI, vol. 13(4), pages 1-17, February.
    7. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    2. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    4. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    5. António Araújo, 2020. "Thermo-Hydraulic Performance of Solar Air Collectors with Artificially Roughened Absorbers: A Comparative Review of Semi-Empirical Models," Energies, MDPI, vol. 13(14), pages 1-33, July.
    6. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    8. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    9. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    10. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2017. "Thermohydraulic performance analysis of an arc shape wire roughened solar air heater," Renewable Energy, Elsevier, vol. 108(C), pages 598-614.
    11. Bensaci, Charaf-Eddine & Moummi, Abdelhafid & Sanchez de la Flor, Francisco J. & Rodriguez Jara, Enrique A. & Rincon-Casado, Alejandro & Ruiz-Pardo, Alvaro, 2020. "Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions," Renewable Energy, Elsevier, vol. 155(C), pages 1231-1244.
    12. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    13. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    14. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    15. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    16. Hamid, Mohammed O.A. & Zhang, Bo, 2015. "Field synergy analysis for turbulent heat transfer on ribs roughened solar air heater," Renewable Energy, Elsevier, vol. 83(C), pages 1007-1019.
    17. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    18. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Arunachala, U.C., 2022. "Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 627-641.
    19. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    20. Sanjeev Kumar Yadav & Atul Lanjewar, 2023. "Experimental analysis of solar air heater duct with discrete arc-pattern combined staggered element roughness on absorber plate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8651-8675, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:954-977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.