IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03203-2.html
   My bibliography  Save this article

Spatiotemporal modeling of the value of carbon sequestration under changing land use/land cover using InVEST model: a case study of Nour-rud Watershed, Northern Iran

Author

Listed:
  • Nematollah Kohestani

    (Sari Agricultural Sciences and Natural Resources University)

  • Shafagh Rastgar

    (Sari Agricultural Sciences and Natural Resources University)

  • Ghodratolla Heydari

    (Sari Agricultural Sciences and Natural Resources University)

  • Shaban Shataee Jouibary

    (Gorgan University of Agricultural Sciences & Natural Resources)

  • Hamid Amirnejad

    (Sari Agricultural Sciences and Natural Resources University)

Abstract

The current paper aims to assess the effects of landscape change in a mountain river basin in the north of Iran through quantifying, mapping, and assessing carbon storage. The analyses were performed based on previous alterations in land use and land cover (LULC) (1988–2018) and on expected changes determined by three LULC alteration setups for 2048. The Landsat imagery from 2018, 2008, 1998, and 1988 was used for evaluating and predicting the spatiotemporal distributions of LULC changes. The future LULC image prediction has been generated using Land Change Modeler (LCM) module of TerrSet software for the years 2028, 2038, and 2048. Validation was carried out by overlaying the actual and projected to 2018 map. We integrated the Markov Chain (MC) and InVEST Carbon Storage and Sequestration (InVEST-CSS) models for simulating the ecosystem carbon storage and the long-term monetary valuation. In this process, we considered social costs/economic value because of the area’s loss and gain of stored carbon. The results show that forests and rangelands with good and poor conditions decreased by 631.2, 10,374, and 10,254 ha, respectively, from 1988 to 2018. Overall, modeling and mapping LULC changes showed a descending trend in forests (0.66%), agriculture (0.1%), and rangelands (4.1%) in 2048. In addition, carbon storage has already been lost by 9.9 million tons (76.98 ha−1) from 1988 to 8.8 million tons (68.86 ha−1) in 2018 and is expected to have an 8.4 million tons (65.25 ha−1) loss by 2048. Monitoring the economic value of carbon storage from 1988 to 2018 shows a loss of $US 15684338 (121.8 ha−1) and estimates a loss of $US6972622 (54.18 ha−1) by 2048. Therefore, spatiotemporal design of InVEST model by estimating the carbon value over time focuses on continuous monitoring actions for both the carbon pools dynamic and LULC pattern. This consideration causes reduction the uncertainty of estimated models and also increases the continuous cost of those changes. This will help government and decision makers for long-term and accurate carbon sequestration strategies for ecosystem.

Suggested Citation

  • Nematollah Kohestani & Shafagh Rastgar & Ghodratolla Heydari & Shaban Shataee Jouibary & Hamid Amirnejad, 2024. "Spatiotemporal modeling of the value of carbon sequestration under changing land use/land cover using InVEST model: a case study of Nour-rud Watershed, Northern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14477-14505, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03203-2
    DOI: 10.1007/s10668-023-03203-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03203-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03203-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Japelaghi & Fariba Hajian & Mehdi Gholamalifard & Biswajeet Pradhan & Khairul Nizam Abdul Maulud & Hyuck-Jin Park, 2022. "Modelling the Impact of Land Cover Changes on Carbon Storage and Sequestration in the Central Zagros Region, Iran Using Ecosystem Services Approach," Land, MDPI, vol. 11(3), pages 1-16, March.
    2. Megersa Kebede Leta & Tamene Adugna Demissie & Jens Tränckner, 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    3. Rahel Hamad & Heiko Balzter & Kamal Kolo, 2018. "Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    4. Ram Avtar & Apisai Vakacegu Rinamalo & Deha Agus Umarhadi & Ankita Gupta & Khaled Mohamed Khedher & Ali P. Yunus & Bhupendra P. Singh & Pankaj Kumar & Netrananda Sahu & Anjar Dimara Sakti, 2022. "Land Use Change and Prediction for Valuating Carbon Sequestration in Viti Levu Island, Fiji," Land, MDPI, vol. 11(8), pages 1-17, August.
    5. Stéphane Zuber & Marc Fleurbaey & Maddalena Ferranna & Mark Budolfson & Francis Dennig & Kian Mintz-Woo & Robert Socolow & Dean Spears, 2019. "The Social Cost of Carbon: Valuing Inequality, Risk, and Population for Climate Policy," PSE-Ecole d'économie de Paris (Postprint) halshs-02400609, HAL.
    6. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    7. Lyndré Nel & Ana Flávia Boeni & Viola Judit Prohászka & Alfréd Szilágyi & Eszter Tormáné Kovács & László Pásztor & Csaba Centeri, 2022. "InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    8. Ya’nan Lu & Shunbo Yao & Zhenmin Ding & Yuanjie Deng & Mengyang Hou, 2020. "Did Government Expenditure on the Grain for Green Project Help the Forest Carbon Sequestration Increase in Yunnan, China?," Land, MDPI, vol. 9(2), pages 1-17, February.
    9. Joungyoon Chun & Choong-Ki Kim & Wanmo Kang & Hyemin Park & Gieun Kim & Woo-Kyun Lee, 2019. "Sustainable Management of Carbon Sequestration Service in Areas with High Development Pressure: Considering Land Use Changes and Carbon Costs," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    10. Haftay Hailu Gebremedhn & Tessema Zewdu Kelkay & Yayanshet Tesfay & Samuel Tuffa & Sintayehu Workeneh Dejene & Sylvanus Mensah & Adam John Mears Devenish & Anthony Egeru, 2022. "Carbon Stock and Change Rate under Different Grazing Management Practices in Semiarid Pastoral Ecosystem of Eastern Ethiopia," Land, MDPI, vol. 11(5), pages 1-13, April.
    11. Jerry L. Holechek & Hatim M. E. Geli & Andres F. Cibils & Mohammed N. Sawalhah, 2020. "Climate Change, Rangelands, and Sustainability of Ranching in the Western United States," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    12. Festus Victor Bekun, 2022. "Mitigating Emissions in India: Accounting for the Role of Real Income, Renewable Energy Consumption and Investment in Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 188-192.
    13. Kang Ma & Yuxiu Zhang & Mengying Ruan & Jing Guo & Tuanyao Chai, 2019. "Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    14. Gallant, Kirsten & Withey, Patrick & Risk, Dave & van Kooten, G. Cornelis & Spafford, Lynsay, 2020. "Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands," Ecological Economics, Elsevier, vol. 171(C).
    15. Somasundaram Jayaraman & Meenakshi Sahu & Nishant K. Sinha & Monoranjan Mohanty & Ranjeet S. Chaudhary & Brijesh Yadav & Lalit K. Srivastava & Kuntal M. Hati & Ashok K. Patra & Ram C. Dalal, 2022. "Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    16. Martin P. Girardin & Nathalie Isabel & Xiao Jing Guo & Manuel Lamothe & Isabelle Duchesne & Patrick Lenz, 2021. "Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. Liang Guo & Xiaohuan Xi & Weijun Yang & Lei Liang, 2021. "Monitoring Land Use/Cover Change Using Remotely Sensed Data in Guangzhou of China," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    18. Akhtar Rehman & Jun Qin & Amjad Pervez & Muhammad Sadiq Khan & Siddique Ullah & Khalid Ahmad & Nazir Ur Rehman, 2022. "Land-Use/Land Cover Changes Contribute to Land Surface Temperature: A Case Study of the Upper Indus Basin of Pakistan," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    19. Willcock, Simon & Martínez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & Vi, 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
    20. Zhonghe Zhao & Gaohuan Liu & Naixia Mou & Yichun Xie & Zengrang Xu & Yong Li, 2018. "Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    21. Zhicheng Zhang & Hongjuan Zhang & Juan Feng & Yirong Wang & Kang Liu, 2021. "Evaluation of Social Values for Ecosystem Services in Urban Riverfront Space Based on the SolVES Model: A Case Study of the Fenghe River, Xi’an, China," IJERPH, MDPI, vol. 18(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    2. Cheechouyang Faichia & Zhijun Tong & Jiquan Zhang & Xingpeng Liu & Emmanuel Kazuva & Kashif Ullah & Bazel Al-Shaibah, 2020. "Using RS Data-Based CA–Markov Model for Dynamic Simulation of Historical and Future LUCC in Vientiane, Laos," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    3. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    4. Ehab Hendawy & A. A. Belal & E. S. Mohamed & Abdelaziz Elfadaly & Beniamino Murgante & Ali A. Aldosari & Rosa Lasaponara, 2019. "The Prediction and Assessment of the Impacts of Soil Sealing on Agricultural Land in the North Nile Delta (Egypt) Using Satellite Data and GIS Modeling," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    5. Camila Orellana Pereira & Rossana Escanilla-Minchel & Alejandra Cortés González & Hernán Alcayaga & Mauricio Aguayo & Miguel Aguayo Arias & Alejandro N. Flores, 2022. "Assessment of Future Land Use/Land Cover Scenarios on the Hydrology of a Coastal Basin in South-Central Chile," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    7. Parviz Azizi & Ali Soltani & Farokh Bagheri & Shahrzad Sharifi & Mehdi Mikaeili, 2022. "An Integrated Modelling Approach to Urban Growth and Land Use/Cover Change," Land, MDPI, vol. 11(10), pages 1-26, October.
    8. Ankita Gupta, 2024. "Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal," Sustainability, MDPI, vol. 16(23), pages 1-27, December.
    9. Sophie Thiam & Eric Ariel L. Salas & Nina Rholan Hounguè & Adrian Delos Santos Almoradie & Sarah Verleysdonk & Julien G. Adounkpe & Kossi Komi, 2022. "Modelling Land Use and Land Cover in the Transboundary Mono River Catchment of Togo and Benin Using Markov Chain and Stakeholder’s Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    10. Miao Guan & Changsheng Xiong, 2022. "The Net Spatio-Temporal Impact of the International Tourism Is-Land Strategy on the Ecosystem Service Value of Hainan Island: A Counterfactual Analysis," Land, MDPI, vol. 11(10), pages 1-15, September.
    11. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    12. Yuliang Li & Ran Yi & Lin Liu & Feng Chen, 2023. "Sustainable Ecosystem Services of a Time-Honored Artificial River Ecosystem—Enlightenments from the Carp Brook, in Northern Fujian Province, China," IJERPH, MDPI, vol. 20(5), pages 1-13, February.
    13. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    14. Sri Murniani Angelina Letsoin & David Herak & Fajar Rahmawan & Ratna Chrismiari Purwestri, 2020. "Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    15. Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
    16. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    17. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    18. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    19. K. Prakash & R. Jegankumar & R. S. Libina, 2023. "Modelling differential urban growth dynamics for growth decentralisation: a study on Tiruchirappalli metropolitan and sub-tier towns, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(4), pages 1191-1221, December.
    20. Raoof Mostafazadeh & Hossein Talebi Khiavi, 2024. "Landscape change assessment and its prediction in a mountainous gradient with diverse land-uses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3911-3941, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03203-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.