IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i4d10.1007_s10668-023-03159-3.html
   My bibliography  Save this article

A data envelopment analysis model for location optimization of feedstock cultivation in a biodiesel supply chain: a case study

Author

Listed:
  • Zahra Mohtashami

    (University of Tehran)

  • Ali Bozorgi-Amiri

    (University of Tehran)

  • Reza Tavakkoli-Moghaddam

    (University of Tehran)

Abstract

Increasing the price of fossil fuels, unreliability of fossil fuels for a secure supply of demand in future and their relevant environmental concerns provide an attitude toward substituting renewable energies with fossil fuels for reaching sustainable development in societies. Biofuels as a type of renewable energies can be easily transferred between supply chain’s centers and do not have limitation for transportation after their production. Among various types of biofuels, biodiesel, which can be mainly produced from the non-edible feedstocks, such as Jatropha Curcas L. (JCL), is preferred to other biofuels because biodiesel production from JCL which can be cultivated in marginal lands, improves three pillars of sustainability. Since biofuel supply chain’s costs can mainly be affected by its feedstock location optimization, this paper used a common weight data envelopment analysis (CWDEA) method for location optimization of feedstock cultivation for a biodiesel supply chain by considering a comprehensive set of sustainability criteria for investigating locations. A case study of Iran is provided for assessing the model’s application, and its results in ranking potential locations for JCL cultivation are validated by a numerical taxonomy (NT) approach. In fact, this paper not only specifies the optimum locations for the feedstock cultivation of a biofuel supply chain regarding to sustainability criteria, but also discuss the balanced socioeconomic development and environmental benefits which can be attained by JCL cultivation in marginal and mostly underdeveloped lands. Provided results imply that vast area of Iran’s marginal lands has suitable climate for JCL cultivation and policy makers can address all aspect of sustainability simultaneously by investment on those specified lands as well as supplying countries’ demand for biodiesel which will be produced from this feedstock. Graphical abstract

Suggested Citation

  • Zahra Mohtashami & Ali Bozorgi-Amiri & Reza Tavakkoli-Moghaddam, 2024. "A data envelopment analysis model for location optimization of feedstock cultivation in a biodiesel supply chain: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 10513-10532, April.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03159-3
    DOI: 10.1007/s10668-023-03159-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03159-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03159-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
    2. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Reza Babazadeh & Mohammad Voria Yavarirad & Ehsan Momeni Bashusqeh, 2018. "Location Optimization of Rapeseed and Soybean Cultivation Areas Considering Economic, Climatic and Social Criteria," International Journal of Social Ecology and Sustainable Development (IJSESD), IGI Global, vol. 9(3), pages 53-65, July.
    5. Chia-Nan Wang & Van Thanh Nguyen & Hoang Tuyet Nhi Thai & Duy Hung Duong, 2018. "Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam," Energies, MDPI, vol. 11(6), pages 1-27, June.
    6. Ilton Leal & Pauli Almada Garcia & Márcio Almeida D’Agosto, 2012. "A data envelopment analysis approach to choose transport modes based on eco-efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(5), pages 767-781, October.
    7. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    8. Milorad Kovacevic, 2010. "Review of HDI Critiques and Potential Improvements," Human Development Research Papers (2009 to present) HDRP-2010-33, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    9. Azadeh, A. & Amalnick, M.S. & Ghaderi, S.F. & Asadzadeh, S.M., 2007. "An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors," Energy Policy, Elsevier, vol. 35(7), pages 3792-3806, July.
    10. Ghelichi, Zabih & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study," Energy, Elsevier, vol. 156(C), pages 661-687.
    11. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    12. Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohtashami, Zahra & Bozorgi-Amiri, Ali & Tavakkoli-Moghaddam, Reza, 2021. "A two-stage multi-objective second generation biodiesel supply chain design considering social sustainability: A case study," Energy, Elsevier, vol. 233(C).
    2. Khanjarpanah, Hossein & Jabbarzadeh, Armin, 2019. "Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis," Energy, Elsevier, vol. 170(C), pages 1004-1018.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    5. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    6. Xianmei Wang & Hanhui Hu, 2017. "Sustainable Evaluation of Social Science Research in Higher Education Institutions Based on Data Envelopment Analysis," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    7. Fusco, Elisa, 2023. "Potential improvements approach in composite indicators construction: The Multi-directional Benefit of the Doubt model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    8. Vassilios Babalos & Michael Doumpos & Nikolaos Philippas & Constantin Zopounidis, 2015. "Towards a Holistic Approach for Mutual Fund Performance Appraisal," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 35-53, June.
    9. Jesús Peiró-Palomino & Andrés J. Picazo-Tadeo, 2018. "Assessing well-being in European regions. Does government quality matter?," Working Papers 2018/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    10. Julián Martinez-Moya & Amparo Mestre-Alcover & Ramon Sala-Garrido, 2024. "Connectivity and competitiveness of the major Mediterranean container ports using ‘Benefit-of-the-Doubt’ and ‘Common Sets of Weights’ methods in Data Envelopment Analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 261-282, June.
    11. Xianmei Wang & Hanhui Hu, 2017. "Sustainability in Chinese Higher Educational Institutions’ Social Science Research: A Performance Interface toward Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-18, October.
    12. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    13. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    14. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    15. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    16. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    17. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    18. Stéphane Blancard & Maximin Bonnet & Jean-François Hoarau, 2020. "The specific role of agriculture for economic vulnerability of small island spaces," Working Papers hal-02441237, HAL.
    19. Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
    20. Petridis, Konstantinos & Tampakoudis, Ioannis & Drogalas, George & Kiosses, Nikolaos, 2022. "A Support Vector Machine model for classification of efficiency: An application to M&A," Research in International Business and Finance, Elsevier, vol. 61(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03159-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.