IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i6d10.1007_s10668-022-02260-3.html
   My bibliography  Save this article

Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios

Author

Listed:
  • Amit Kumar

    (Indian Institute of Science Education and Research Bhopal)

  • Abhilash Singh

    (Indian Institute of Science Education and Research Bhopal)

  • Kumar Gaurav

    (Indian Institute of Science Education and Research Bhopal)

Abstract

We use Soil and Water Assessment Tool (SWAT) to simulate the combined effects of land use/land cover (LU/LC) and climate change on the hydrological response of the Upper Betwa River Catchment (UBRC), a semi-arid region in Central India. We execute this model for two different time periods, 1982–2000 and 2001–2018, using the LU/LC data of 1990 and 2018, respectively. We classified the Landsat satellite images of 1990 and 2018 to obtain the dominant LU/LC classes (water body, built-up, forest, agriculture, and open land) in the catchment. The water body, built-up areas, and cropland have increased by 63%, 65%, and 3%, respectively, whereas forest cover and open land decreased by 16% and 23% in the UBRC from 1990 to 2018. The observed climate data in UBRC shows an increase in the average temperature and decrease in the total rainfall during the period between 1980 to 2018. Once the model is set up, we perform the calibration and validation by using the SWAT Calibration Uncertainty Program (SWAT-CUP). We considered two time periods (1991–1994 and 2001–2007) for the calibration and (1995–1998 and 2008–2014) for the validation. For both these time periods, the calibration and validation result of our model is satisfactory. The output of our calibrated model shows a relative decrease in rainfall (12%), surface runoff (21%), and percolation (9%) in the catchment during the period between 2001–2018 as compared to 1982–2000. Finally, we simulate the surface runoff and percolation in the UBRC using the future climate change scenario. We used the bias-corrected multi-model ensemble of CMIP6 GCMs for four different climate scenarios (2023–2100) by assuming no change in the existing LU/LC. We do this for two different time slices: one from 2023–2060 and the other from 2061–2100. For all the climate scenarios, rainfall and surface runoff in the catchment are expected to decrease by 15–40% and 50–79% as compared to the baseline period of 1982–2018. Percolation in the catchment will have a mixed response. It is expected to decrease by 18% in the middle part of the catchment and increase about 25% in the remaining parts of the catchment.

Suggested Citation

  • Amit Kumar & Abhilash Singh & Kumar Gaurav, 2023. "Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5163-5184, June.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02260-3
    DOI: 10.1007/s10668-022-02260-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02260-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02260-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binbin Zhang & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Rudra & Rituraj Shukla & Baljeet Kaur & Jun Hou, 2018. "Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    2. Veronika Eyring & Peter M. Cox & Gregory M. Flato & Peter J. Gleckler & Gab Abramowitz & Peter Caldwell & William D. Collins & Bettina K. Gier & Alex D. Hall & Forrest M. Hoffman & George C. Hurtt & A, 2019. "Taking climate model evaluation to the next level," Nature Climate Change, Nature, vol. 9(2), pages 102-110, February.
    3. Boini Narsimlu & Ashvin Gosain & Baghu Chahar, 2013. "Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3647-3662, August.
    4. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    5. M. K. Roxy & Subimal Ghosh & Amey Pathak & R. Athulya & Milind Mujumdar & Raghu Murtugudde & Pascal Terray & M. Rajeevan, 2017. "A threefold rise in widespread extreme rain events over central India," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    6. Sohail Abbas & Shazia Kousar & Amber Pervaiz, 2021. "Effects of energy consumption and ecological footprint on CO2 emissions: an empirical evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13364-13381, September.
    7. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    8. Sohail Abbas & Shazia Kousar, 2021. "Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15314-15340, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    2. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    3. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    4. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    5. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    6. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    9. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    10. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. Frauke Meyer & Hawal Shamon & Stefan Vögele, 2022. "Dynamics and Heterogeneity of Environmental Attitude, Willingness and Behavior in Germany from 1993 to 2021," Sustainability, MDPI, vol. 14(23), pages 1-22, December.
    12. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    13. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    14. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    15. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    16. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Jan 2024.
    17. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    18. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    19. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    20. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02260-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.