IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2897-d163908.html
   My bibliography  Save this article

Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada

Author

Listed:
  • Binbin Zhang

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

  • Narayan Kumar Shrestha

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

  • Prasad Daggupati

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

  • Ramesh Rudra

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

  • Rituraj Shukla

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

  • Baljeet Kaur

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

  • Jun Hou

    (School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)

Abstract

This paper focuses on understanding the effects of projected climate change on streamflow dynamics of the Grand and Thames rivers of the Northern Lake Erie (NLE) basin. A soil water assessment tool (SWAT) model is developed, calibrated, and validated in a base-period. The model is able to simulate the monthly streamflow dynamics with ‘Good’ to ‘Very Good’ accuracy. The calibrated and validated model is then subjected with daily bias-corrected future climatic data from the Canadian Regional Climate Model (CanRCM4). Five bias-correction methods and their 12 combinations were evaluated using the Climate Model data for hydrologic modeling (CMhyd). Distribution mapping (DM) performed the best and was used for further analysis. Two future time-periods and two IPCC AR5 representative concentration pathways (RCPs) are considered. Results showed marked temporal and spatial variability in precipitation (−37% to +63%) and temperature (−3 °C to +14 °C) changes, which are reflected in evapotranspiration (−52% to +412%) and soil water storage (−60% to +12%) changes, resulting in heterogeneity in streamflow (−77% to +170%) changes. On average, increases in winter (+11%), and decreases in spring (–33%), summer (−23%), and autumn (−15%) streamflow are expected in future. This is the first work of this kind in the NLE and such marked variability in water resources availability poses considerable challenges to water resources planners and managers.

Suggested Citation

  • Binbin Zhang & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Rudra & Rituraj Shukla & Baljeet Kaur & Jun Hou, 2018. "Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2897-:d:163908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    2. Woonsup Choi & Sung Kim & Mark Lee & Kristina Koenig & Peter Rasmussen, 2014. "Hydrological Impacts of Warmer and Wetter Climate in Troutlake and Sturgeon River Basins in Central Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5319-5333, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
    2. Amit Kumar & Abhilash Singh & Kumar Gaurav, 2023. "Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5163-5184, June.
    3. Annah Ndeketeya & Morgan Dundu, 2021. "Application of HEC-HMS Model for Evaluation of Rainwater Harvesting Potential in a Semi-arid City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4217-4232, September.
    4. Baljeet Kaur & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Pal Rudra & Pradeep Kumar Goel & Rituraj Shukla & Nabil Allataifeh, 2019. "Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada," Sustainability, MDPI, vol. 11(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jew Das & N. V. Umamahesh, 2018. "Spatio-Temporal Variation of Water Availability in a River Basin under CORDEX Simulated Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1399-1419, March.
    2. Phong Nguyen Thanh & Thinh Le Van & Tuan Tran Minh & Tuyen Huynh Ngoc & Worapong Lohpaisankrit & Quoc Bao Pham & Alexandre S. Gagnon & Proloy Deb & Nhat Truong Pham & Duong Tran Anh & Vuong Nguyen Din, 2023. "Adapting to Climate-Change-Induced Drought Stress to Improve Water Management in Southeast Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-27, June.
    3. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    4. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    5. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    6. Kashish Sadhwani & T. I. Eldho, 2023. "Assessing the Vulnerability of Water Balance to Climate Change at River Basin Scale in Humid Tropics: Implications for a Sustainable Water Future," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    7. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    8. Babak Farjad & Anil Gupta & Danielle J. Marceau, 2016. "Annual and Seasonal Variations of Hydrological Processes Under Climate Change Scenarios in Two Sub-Catchments of a Complex Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2851-2865, June.
    9. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    10. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    11. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    12. Chen, Dengshuai & Li, Jing & Yang, Xiaonan & Zhou, Zixiang & Pan, Yuqi & Li, Manchun, 2020. "Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed," Ecosystem Services, Elsevier, vol. 43(C).
    13. Xu Chen & Ruiguang Han & Ping Feng & Yongjie Wang, 2022. "Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1305-1337, January.
    14. Abdennabi Alitane & Ali Essahlaoui & Ann Van Griensven & Estifanos Addisu Yimer & Narjisse Essahlaoui & Meriame Mohajane & Celray James Chawanda & Anton Van Rompaey, 2022. "Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    15. Junyu Qi & Sheng Li & Qi Yang & Zisheng Xing & Fan-Rui Meng, 2017. "SWAT Setup with Long-Term Detailed Landuse and Management Records and Modification for a Micro-Watershed Influenced by Freeze-Thaw Cycles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3953-3974, September.
    16. Maryam Abbaszadeh & Ommolbanin Bazrafshan & Rasool Mahdavi & Elham Rafiei Sardooi & Sajad Jamshidi, 2023. "Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4177-4194, August.
    17. Pipas Kumar & Varun Joshi, 2019. "Modelling Surface Run-off Response Using Hydrological Model Swat in The Upper Watershed of River Subarnarekha, India," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 09-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2897-:d:163908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.