IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v71y2023i3-4p329-353.html
   My bibliography  Save this article

Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach

Author

Listed:
  • Roy Brouwer
  • Rute Pinto
  • Jorge Garcia‐Hernandez
  • Xingtong Li
  • Merrin Macrae
  • Predrag Rajsic
  • Wanhong Yang
  • Yongbo Liu
  • Mark Anderson
  • Louise Heyming

Abstract

The objective of this study is to identify the optimal spatial distribution of Best Management Practices (BMPs) to reduce total phosphorus (TP) runoff from agricultural land in the largest Canadian watershed draining into Lake Erie, the Great Lake most vulnerable to eutrophication. BMP measures include reduced fertilizer application, cover crops, buffer strips, and the restoration of wetlands. Environmental SWAT model results feed into a spatial optimization procedure using two separate objective functions to distinguish between public BMP program implementation costs (PIC) on the one hand and farmers’ private pollution abatement costs (PAC) on the other hand. The latter account for the opportunity costs of land retirement and changing land productivity. PAC are initially lower than PIC but exceed the latter after 30% of the annual TP baseline load is eliminated. This suggests that under optimal conditions existing grant and incentive payments cover the economic costs farmers face up to a maximum of 30% of the baseline load reduction. Imposing further reductions of up to 40% results in a cost to farmers of almost $52 million per year. This is 45% higher than the optimal solution based on PIC and therefore not deemed incentive‐compatible under the watershed's existing cost‐sharing scheme. L'objectif de cette étude est d'identifier la distribution spatiale optimale des meilleures pratiques de gestion (BMP) pour réduire le ruissellement de phosphore total (TP) des terres agricoles dans le plus grand bassin versant canadien qui se déverse dans le lac Érié, le Grand Lac le plus vulnérable à l'eutrophisation. Les mesures de BMP comprennent la réduction de l’épandage d'engrais, les cultures de couverture, les bandes tampons et la restauration des milieux humides. Les résultats environnemental du modèle SWAT alimentent une procédure d'optimisation spatiale utilisant deux fonctions objectives distinctes pour faire la distinction entre les coûts publics de mise en œuvre des programmes de BMP (PIC) d'une part et les coûts privés de réduction de la pollution (PAC) des agriculteurs d'autre part. Ces derniers tiennent compte des coûts d'opportunité de la mise hors service des terres et de l’évolution de la productivité des terres. Les PAC sont initialement inférieurs aux PIC, mais dépassent ce dernier après l’élimination de 30% de la charge de base annuelle de TP. Cela suggère que, dans des conditions optimales, les subventions et les primes d'incitation existantes couvrent les coûts économiques auxquels les agriculteurs sont confrontés jusqu’à un maximum de 30% de la réduction de la charge de base. L'imposition de réductions supplémentaires allant jusqu’à 40% entraîne un coût pour les agriculteurs de près de 52 millions de dollars par année. Il s'agit d'une augmentation de 45% par rapport à la solution optimale fondée sur le PIC et qui n'est donc pas jugée compatible avec les incitatifs dans le cadre du système actuel de partage des coûts du bassin versant.

Suggested Citation

  • Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
  • Handle: RePEc:bla:canjag:v:71:y:2023:i:3-4:p:329-353
    DOI: 10.1111/cjag.12342
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12342
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baljeet Kaur & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Pal Rudra & Pradeep Kumar Goel & Rituraj Shukla & Nabil Allataifeh, 2019. "Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada," Sustainability, MDPI, vol. 11(7), pages 1-22, March.
    2. Binbin Zhang & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Rudra & Rituraj Shukla & Baljeet Kaur & Jun Hou, 2018. "Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    3. Liu, Haiyan & Brouwer, Roy, 2022. "Incentivizing the future adoption of best management practices on agricultural land to protect water resources: The role of past participation and experiences," Ecological Economics, Elsevier, vol. 196(C).
    4. Brett G. Cortus & Scott R. Jeffrey & James R. Unterschultz & Peter C. Boxall, 2011. "The Economics of Wetland Drainage and Retention in Saskatchewan," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 59(1), pages 109-126, March.
    5. Kaitlin E. Kelly & Ken Belcher & Mohammad Khakbazan, 2018. "Economic Targeting of Agricultural Beneficial Management Practices to Address Phosphorus Runoff in Manitoba," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(1), pages 143-166, March.
    6. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    7. Wanhong Yang & Chaodong Sheng & Paul Voroney, 2005. "Spatial Targeting of Conservation Tillage to Improve Water Quality and Carbon Retention Benefits," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 477-500, December.
    8. Aaron De Laporte & Alfons Weersink & Wanhong Yang, 2010. "Ecological Goals and Wetland Preservation Choice," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(1), pages 131-150, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron Laporte, 2014. "Effects of Crop Prices, Nuisance Costs, and Wetland Regulation on Saskatchewan NAWMP Implementation Goals," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 47-67, March.
    2. Gopalakrishnan, Sathya & Liu, Hongxing, 2018. "Land-lake Dynamics: Are there Welfare Gains from Targeted Policies in a Heterogeneous Landscape," 2018 Annual Meeting, August 5-7, Washington, D.C. 274310, Agricultural and Applied Economics Association.
    3. Sean Woznicki & A. Nejadhashemi, 2013. "Spatial and Temporal Variabilities of Sediment Delivery Ratio," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2483-2499, May.
    4. Ochoa, Vivian & Urbina-Cardona, Nicolás, 2017. "Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges," Ecosystem Services, Elsevier, vol. 26(PA), pages 155-169.
    5. Uribe, Natalia & Corzo, Gerald & Quintero, Marcela & van Griensven, Ann & Solomatine, Dimitri, 2018. "Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia," Agricultural Water Management, Elsevier, vol. 209(C), pages 62-72.
    6. Liu, Hongxing & Gopalakrishnan, Sathya & Browning, Drew & Sivandran, Gajan, 2019. "Valuing water quality change using a coupled economic-hydrological model," Ecological Economics, Elsevier, vol. 161(C), pages 32-40.
    7. Withey, Patrick & van Kooten, G. Cornelis, 2014. "Wetlands Retention and Optimal Management of Waterfowl Habitat under Climate Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-18, April.
    8. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    9. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    10. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    11. Feng, Hongli & Jha, Manoj & Gassman, Philip W. & Parcel, Joshua D., 2007. "A Recent Trend in Ecological Economic Research: Quantifying the Benefits and Costs of Improving Ecosystem Services," ISU General Staff Papers 200701010800001812, Iowa State University, Department of Economics.
    12. Catherine L. Kling & Yiannis Panagopoulos & Sergey S. Rabotyagov & Adriana M. Valcu & Philip W. Gassman & Todd Campbell & Michael J. White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj K. Jha & Je, 2014. "LUMINATE: linking agricultural land use, local water quality and Gulf of Mexico hypoxia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 431-459.
    13. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    14. Boxall, Peter C. & Weber, Marian & Perger, Orsolya & Cutlac, Marius & Samarawickrema, Antony, 2008. "Results from the Farm Behaviour Component of the Integrated Economic-Hydrologic Model for the Watershed Evaluation of Beneficial Management Practices Program," Project Report Series 116268, University of Alberta, Department of Resource Economics and Environmental Sociology.
    15. G. Cornelis van Kooten & Patrick Withey & Linda Wong, 2011. "Bioeconomic Modeling of Wetlands and Waterfowl in Western Canada: Accounting for Amenity Values," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 59, pages 167-183, June.
    16. Ryota Tsuchiya & Tasuku Kato & Jaehak Jeong & Jeffrey G. Arnold, 2018. "Development of SWAT-Paddy for Simulating Lowland Paddy Fields," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    17. Uchida, Emi & Swallow, Stephen K. & Gold, Arthur J. & Opaluch, James & Kafle, Achyut & Merrill, Nathaniel H. & Michaud, Clayton & Gill, Carrie Anne, 2018. "Integrating Watershed Hydrology and Economics to Establish a Local Market for Water Quality Improvement: A Field Experiment," Ecological Economics, Elsevier, vol. 146(C), pages 17-25.
    18. Hurford, A.P. & McCartney, M.P. & Harou, J.J. & Dalton, J. & Smith, D.M. & Odada, E., 2020. "Balancing services from built and natural assets via river basin trade-off analysis," Ecosystem Services, Elsevier, vol. 45(C).
    19. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    20. Rong Gan & Changzheng Chen & Jie Tao & Yongqiang Shi, 2021. "Hydrological Process Simulation of Sluice-Controlled Rivers in the Plains Area of China Based on an Improved SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1817-1835, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:71:y:2023:i:3-4:p:329-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.