IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i5d10.1007_s10668-022-02150-8.html
   My bibliography  Save this article

Reducing carbon emissions in Egyptian roads through improving the streets quality

Author

Listed:
  • Rania Rushdy Moussa

    (The British University in Egypt)

Abstract

The streetscape of any city reflects the natural built fabric of the street and adds to the experiential quality of that space. A sustainable streetscape ensures that the spaces are long-lasting and functional as a part of the greater sustainable eco-system. Over the past two centuries, mankind has increased the concentration of carbon dioxide (CO2) in the atmosphere from 280 to more than 380 parts per million by volume, and it is still increasing every day. If Earth continues to emit carbon without control, the surface temperature is expected to rise by 3.4 °C by the end of this century. Climate change of that magnitude would likely have serious, long-lasting, and, in many cases, devastating consequences for the planet Earth. Egypt has become one of the biggest emitters of atmospheric pollutants from the transportation sector. The level of carbon emissions and its effect on air quality are placed high on the research agenda. The transportation sector has a great impact on increasing CO2 emissions. The transportation and traffic sectors produce a quarter of the global CO2 emissions due to the heavy use of fossil fuels. This research aims to study the effects of street shape and design on CO2 production. This paper presents an analysis of road transportation in Egypt, taking Helmiet EL-Zaitoun as the main case study, with a focus on energy demand and carbon dioxide (CO2) emissions. Carbon emissions are measured using “Testo 315-3” as a measuring instrument to identify the relationship between street design and quality on the amount of carbon emissions produced. The results of this research suggest that street quality affects the amount of CO2 emissions produced. A car moving at a constant speed will produce fewer CO2 emissions than a car forced to start–stop every while because of external factors such as cracks in the roads occurring from bad streetscape elements. The presented research provides a set of guidelines to enhance the quality of the streetscape and design in order to reduce the amount of CO2 produced in the streets.

Suggested Citation

  • Rania Rushdy Moussa, 2023. "Reducing carbon emissions in Egyptian roads through improving the streets quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4765-4786, May.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02150-8
    DOI: 10.1007/s10668-022-02150-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02150-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02150-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Albalate & Xavier Fageda, 2019. "Congestion, Road Safety, and the Effectiveness of Public Policies in Urban Areas," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    2. Eid, Helmy M. & El-Marsafawy, Samia M. & Ouda, Samiha A., 2007. "Assessing the economic impacts of climate change on agriculture in Egypt : a ricardian approach," Policy Research Working Paper Series 4293, The World Bank.
    3. Barth, Matthew & Boriboonsomsin, Kanok, 2009. "Traffic Congestion and Greenhouse Gases," University of California Transportation Center, Working Papers qt3vz7t3db, University of California Transportation Center.
    4. Ibrahim Hegazy & Wael Seddik & Hossam Ibrahim, 2017. "Towards green cities in developing countries: Egyptian new cities as a case study," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 358-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    2. Hamilton, Timothy L. & Wichman, Casey J., 2018. "Bicycle infrastructure and traffic congestion: Evidence from DC's Capital Bikeshare," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 72-93.
    3. Cho, Joongkoo & Hu, Weihong, 2013. "Network-Based Simulation of Air Pollution Emissions Associated with Truck Operations," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 52(3).
    4. Yoon Lee & Taeyeon Yoon & Yongsuk Hong, 2019. "Is Sustainable Watershed Management Feasible under Climate Change? An Economic Appraisal of the Nile River," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    5. Tite Ehuitché Béké & Aïssata Sobia, 2020. "The Economic Impact of Climatic Variations on Ivorian Rice Farming," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 88-109, June.
    6. Natalia Distefano & Salvatore Leonardi, 2022. "Evaluation of the Effectiveness of Traffic Calming Measures by SPEIR Methodology: Framework and Case Studies," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    7. Meicun Li & Chunmei Mao, 2020. "Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region," IJERPH, MDPI, vol. 17(15), pages 1-12, August.
    8. Vahid Balali & Soheil Fathi & Mehrdad Aliasgari, 2020. "Vector Maps Mobile Application for Sustainable Eco-Driving Transportation Route Selection," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    9. Huang, Hongfu & Xing, Xinjie & He, Yong & Gu, Xiaoyu, 2020. "Combating greenwashers in emerging markets: A game-theoretical exploration of firms, customers and government regulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    10. Kostandini, Genti & La Rovere, Roberto & Abdoulaye, Tahirou, 2013. "Potential impacts of increasing average yields and reducing maize yield variability in Africa," Food Policy, Elsevier, vol. 43(C), pages 213-226.
    11. Anderluh, Alexandra & Nolz, Pamela C. & Hemmelmayr, Vera C. & Crainic, Teodor Gabriel, 2021. "Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics," European Journal of Operational Research, Elsevier, vol. 289(3), pages 940-958.
    12. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    13. Bircan Arslannur & Ahmet Tortum, 2023. "Public Transport Modeling for Commuting in Cities with Different Development Levels Using Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    14. Turkensteen, Marcel, 2017. "The accuracy of carbon emission and fuel consumption computations in green vehicle routing," European Journal of Operational Research, Elsevier, vol. 262(2), pages 647-659.
    15. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    16. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    17. Bruce McCarl & Mark Musumba & Joel Smith & Paul Kirshen & Russell Jones & Akram El-Ganzori & Mohamed Ali & Mossad Kotb & Ibrahim El-Shinnawy & Mona El-Agizy & Mohamed Bayoumi & Riina Hynninen, 2015. "Climate change vulnerability and adaptation strategies in Egypt’s agricultural sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1097-1109, October.
    18. Hazem S. Kassem & Abdel Raouf Suleiman Bello & Bader M. Alotaibi & Fahd O. Aldosri & Gary S. Straquadine, 2019. "Climate Change Adaptation in the Delta Nile Region of Egypt: Implications for Agricultural Extension," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    19. Ihab Kaddoura & Kai Nagel, 2018. "Simultaneous internalization of traffic congestion and noise exposure costs," Transportation, Springer, vol. 45(5), pages 1579-1600, September.
    20. Yingcui Du & Feng Sun & Fangtong Jiao & Benxing Liu & Xiaoqing Wang & Pengsheng Zhao, 2023. "The Identification of Intersection Entrance Accidents Based on Autoencoder," Sustainability, MDPI, vol. 15(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02150-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.