IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i4d10.1007_s10668-021-01674-9.html
   My bibliography  Save this article

How ICT can contribute to realize a sustainable society in the future: a CGE approach

Author

Listed:
  • Xiaoxi Zhang

    (NTT)

  • Machiko Shinozuka

    (NTT)

  • Yuriko Tanaka

    (NTT Advanced Technology Corporation)

  • Yuko Kanamori

    (National Institute for Environmental Studies (NIES))

  • Toshihiko Masui

    (National Institute for Environmental Studies (NIES))

Abstract

Many information and communications technology (ICT) services have become commonplace worldwide and are certain to continue to spread faster than before, particularly along with the commercialization of 5G and movement restrictions in response to the COVID-19 Pandemic. Although there is a concern that ICT equipment usage may increase power consumption and emit greenhouse gas (GHG) emissions, ICT has also been contributing to reducing GHG emissions through improved productivity and reduced mobility. This research targeted the main ICT services used in Japan and adopted a dynamic national computable general equilibrium model to quantitatively analyze future impacts on economic growth and GHG emission reduction until 2030 by using these ICTs, while considering both the increase in power consumption of ICT itself and the reduction in environmental load in other sectors. The results showed that the spread of ICT services, especially some artificial intelligence-based services, can improve productivity in most sectors through labor-saving and contribute to improving overall gross domestic product (GDP). Additionally, increased efficiency of logistics and manufacturing can greatly reduce the input of oil and coal products and so greatly contribute to GHG emission reduction. In 2030, compared with the baseline scenario in which all technology levels are fixed at current levels, at least 1% additional GDP growth and 4% GHG emission reduction can be expected by the targeted introduction of ICT in the ICT accelerated scenario in which the technology level of ICT accelerates. This also means ICT can potentially decouple the economy from the environment.

Suggested Citation

  • Xiaoxi Zhang & Machiko Shinozuka & Yuriko Tanaka & Yuko Kanamori & Toshihiko Masui, 2022. "How ICT can contribute to realize a sustainable society in the future: a CGE approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5614-5640, April.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01674-9
    DOI: 10.1007/s10668-021-01674-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01674-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01674-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Oulton, 2002. "ICT and Productivity Growth in the United Kingdom," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 18(3), pages 363-379.
    2. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    3. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.
    4. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    5. Freek BOMHOF & Paula van HOORIK & Maartje DONKERS, 2009. "Systematic Analysis of Rebound Effects for "Greening by ICT" Initiatives," Communications & Strategies, IDATE, Com&Strat dept., vol. 1(76), pages 77-96, 4th quart.
    6. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    7. Chunark, Puttipong & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko, 2017. "Renewable energy achievements in CO2 mitigation in Thailand's NDCs," Renewable Energy, Elsevier, vol. 114(PB), pages 1294-1305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Huwei & Liang, Weitao & Lee, Chien-Chiang, 2022. "Urban broadband infrastructure and green total-factor energy efficiency in China," Utilities Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    2. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    3. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    4. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    5. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    6. Melike E. Bildirici & Rui Alexandre Castanho & Fazıl Kayıkçı & Sema Yılmaz Genç, 2022. "ICT, Energy Intensity, and CO 2 Emission Nexus," Energies, MDPI, vol. 15(13), pages 1-15, June.
    7. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    8. Wang, Jen Chun, 2022. "Understanding the energy consumption of information and communications equipment: A case study of schools in Taiwan," Energy, Elsevier, vol. 249(C).
    9. Bakry, Walid & Nghiem, Xuan-Hoa & Farouk, Sherine & Vo, Xuan Vinh, 2023. "Does it hurt or help? Revisiting the effects of ICT on economic growth and energy consumption: A nonlinear panel ARDL approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 597-617.
    10. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    11. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    12. Szalavetz, Andrea, 2018. "Digitális átalakulás és fenntarthatóság. A technológiaoptimista környezetgazdászok és a pesszimista ökológiai közgazdászok közötti vita újraindítása [Digital transformation and environmental sustai," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1067-1088.
    13. Elheddad, Mohamed & Benjasak, Chonlakan & Deljavan, Rana & Alharthi, Majed & Almabrok, Jaballa M., 2021. "The effect of the Fourth Industrial Revolution on the environment: The relationship between electronic finance and pollution in OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    14. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    15. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    16. Taha Zaghdoudi, 2017. "Internet usage, renewable energy, electricity consumption and economic growth : Evidence from developed countries," Economics Bulletin, AccessEcon, vol. 37(3), pages 1612-1619.
    17. Liu, Jun & Liu, Liang & Qian, Yu & Song, Shunfeng, 2022. "The effect of artificial intelligence on carbon intensity: Evidence from China's industrial sector," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    18. Yating Zeng & Xinyue Xu & Yuyao Zhao & Bin Li, 2023. "Impact of Digital Economy on the Upgrading of Energy Consumption Structure: Evidence from Mainland China," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    19. Anser, Muhammad Khalid & Yousaf, Zahid & Nassani, Abdelmohsen A. & Vo, Xuan Vinh & Zaman, Khalid, 2020. "Evaluating ‘natural resource curse’ hypothesis under sustainable information technologies: A case study of Saudi Arabia," Resources Policy, Elsevier, vol. 68(C).
    20. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01674-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.