IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v5y2008i4p317-335.html
   My bibliography  Save this article

Using economic and financial information for stock selection

Author

Listed:
  • I. Roko
  • M. Gilli

Abstract

A major inconvenience of the traditional approach in portfolio choice, based upon historical information, is its inability to anticipate sudden changes of price tendencies. Introducing information about future behavior of the assets fundamentals may help to make more appropriate choices. However the specification and parameterization of a model linking this exogenous information to the asset prices is not straightforward. Classification trees can be used to construct partitions of assets of forecasted similar behavior. We analyze the performance of this approach and apply it to different sectors of the S&P500.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • I. Roko & M. Gilli, 2008. "Using economic and financial information for stock selection," Computational Management Science, Springer, vol. 5(4), pages 317-335, October.
  • Handle: RePEc:spr:comgts:v:5:y:2008:i:4:p:317-335
    DOI: 10.1007/s10287-007-0056-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-007-0056-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-007-0056-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruce N. Lehmann, 1988. "Fads, Martingales, and Market Efficiency," NBER Working Papers 2533, National Bureau of Economic Research, Inc.
    2. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    3. Thomas J. George & Chuan-Yang Hwang, 2004. "The 52-Week High and Momentum Investing," Journal of Finance, American Finance Association, vol. 59(5), pages 2145-2176, October.
    4. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, Oxford University Press, vol. 105(1), pages 1-28.
    5. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    6. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    7. Chan, Louis K C & Jegadeesh, Narasimhan & Lakonishok, Josef, 1996. "Momentum Strategies," Journal of Finance, American Finance Association, vol. 51(5), pages 1681-1713, December.
    8. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    9. Marina Velikova & Hennie Daniels, 2004. "Decision trees for monotone price models," Computational Management Science, Springer, vol. 1(3), pages 231-244, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I-Cheng Yeh, 2023. "Synergy frontier of multi-factor stock selection model," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 445-480, March.
    2. Björn Fastrich & Peter Winker, 2012. "Robust portfolio optimization with a hybrid heuristic algorithm," Computational Management Science, Springer, vol. 9(1), pages 63-88, February.
    3. Peter Winker & Marianna Lyra & Chris Sharpe, 2011. "Least median of squares estimation by optimization heuristics with an application to the CAPM and a multi-factor model," Computational Management Science, Springer, vol. 8(1), pages 103-123, April.
    4. Piotr Arendarski, 2012. "Tactical allocation in falling stocks: Combining momentum and solvency ratio signals," Working Papers 2012-01, Faculty of Economic Sciences, University of Warsaw.
    5. I-Cheng Yeh & Yi-Cheng Liu, 2020. "Discovering optimal weights in weighted-scoring stock-picking models: a mixture design approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khandani, Amir E. & Lo, Andrew W., 2011. "What happened to the quants in August 2007? Evidence from factors and transactions data," Journal of Financial Markets, Elsevier, vol. 14(1), pages 1-46, February.
    2. Geoffrey Booth, G. & Fung, Hung-Gay & Leung, Wai Kin, 2016. "A risk-return explanation of the momentum-reversal “anomaly”," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 68-77.
    3. McInish, Thomas H. & Ding, David K. & Pyun, Chong Soo & Wongchoti, Udomsak, 2008. "Short-horizon contrarian and momentum strategies in Asian markets: An integrated analysis," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 312-329.
    4. Chou, Pin-Huang & Wei, K.C. John & Chung, Huimin, 2007. "Sources of contrarian profits in the Japanese stock market," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 261-286, June.
    5. Hwang, Soosung & Cho, Youngha & Noh, Sanha, 2022. "The cost of overconfidence in public information," International Review of Financial Analysis, Elsevier, vol. 79(C).
    6. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    7. Wang, Yuming & Ma, Jinpeng, 2014. "Excess volatility and the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 1-16.
    8. Tim Herberger & Daniel Kohlert & Andreas Oehler, 2011. "Momentum and industry-dependence: An analysis of the Swiss stock market," Journal of Asset Management, Palgrave Macmillan, vol. 11(6), pages 391-400, February.
    9. Hong-Yi Chen & Sheng-Syan Chen & Chin-Wen Hsin & Cheng Few Lee, 2020. "Does Revenue Momentum Drive or Ride Earnings or Price Momentum?," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 94, pages 3263-3318, World Scientific Publishing Co. Pte. Ltd..
    10. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    11. Shen, Qian & Szakmary, Andrew C. & Sharma, Subhash C., 2005. "Momentum and contrarian strategies in international stock markets: Further evidence," Journal of Multinational Financial Management, Elsevier, vol. 15(3), pages 235-255, July.
    12. Savor, Pavel G., 2012. "Stock returns after major price shocks: The impact of information," Journal of Financial Economics, Elsevier, vol. 106(3), pages 635-659.
    13. Chiao-Yi Chang, 2013. "Daily momentum profits with firm characteristics and investors’ optimism in the Taiwan market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 253-273, April.
    14. Waszczuk, Antonina, 2013. "A risk-based explanation of return patterns—Evidence from the Polish stock market," Emerging Markets Review, Elsevier, vol. 15(C), pages 186-210.
    15. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    16. Sagi, Jacob S. & Seasholes, Mark S., 2007. "Firm-specific attributes and the cross-section of momentum," Journal of Financial Economics, Elsevier, vol. 84(2), pages 389-434, May.
    17. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa Onur, 2012. "Systematic risk and the cross section of hedge fund returns," Journal of Financial Economics, Elsevier, vol. 106(1), pages 114-131.
    18. Shiller, Robert J., 1999. "Human behavior and the efficiency of the financial system," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 20, pages 1305-1340, Elsevier.
    19. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    20. Lin, Chaonan & Ko, Kuan-Cheng & Chen, Yu-Lin & Chu, Hsiang-Hui, 2016. "Information discreteness, price limits and earnings momentum," Pacific-Basin Finance Journal, Elsevier, vol. 37(C), pages 1-22.

    More about this item

    Keywords

    Portfolio optimization; Decision trees; Factor models; G12; C35;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:5:y:2008:i:4:p:317-335. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.